

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Umwelt BAFU

NIEDRIGWASSERSTATISTIK

STATIONSBERICHT

Birs - Münchenstein, Hofmatt

weitere Erläuterungen: <u>Leitfaden</u> Kontakt: hydrologie@bafu.admin.ch

Inhaltsverzeichnis

1	Dat	engrui	ndlage	2
2	\mathbf{Res}	ultate	der parametrischen Verfahren	6
	2.1	Niedri	gwasserabfluss	7
		2.1.1	gwasserabfluss	7
		2.1.2	Peaks Over Threshold Ansatz (POT)	10
			Vergleich der verschiedenen Resultate	
	2.2	Niedri	gwasserdauer	13
	2.3		volumen	
3	Lite	eratur		19
\mathbf{A} :	nhan	g		20
	A	Bestin	nmung des Schwellenwerts zur Abgrenzung von Extremwerten	20
		A.1	Niedrigwasserabfluss	
		A.2	Niedrigwasserdauer	
		A.3	Defizit volumen	
	В	Glossa	Tr	

1 Datengrundlage

Es stehen die folgenden Abflussdaten für die extremwertstatistischen Auswertungen zur Verfügung:

Vorhandene Daten	seit	bis
Digitale Tagesmittel	01.01.1908	31.12.1913
	01.09.1916	31.12.2019

Ein Limnigraph wurde am 01. September 1916 in Betrieb genommen.

Die Abflussdaten können folgendermassen charakterisiert werden:

Abflussverlauf	Beschreibung
Abflussregimetyp	Pluvial jurassien: Leicht erhöhter Abfluss im Winter und Frühling.
Ausprägung der Saisonalität	Leichte Saisonalität in den Monatsminima der M7Q zu erkennen (Ab-
	bildung 2).
Beeinflussung	Geringe Beeinflussung durch eine Vielzahl verschiedener Laufkraftwerke.
	Einige davon wurden vor oder gleich zu Beginn der Auswertungsperiode
	in Betrieb genommen. Generell ist der Einfluss von Laufkraftwerken sehr
	gering, so dass in den Daten keine Auswirkungen zu sehen sind.

Aufgrund des zeitlichen Auftretens der Niedrigwasserperioden (vgl. Abbildung 1) wird der April als Startmonat für das Niedrigwasserjahr der Station Birs - Münchenstein, Hofmatt gewählt. Entsprechend dauert ein Niedrigwasserjahr vom 01.04. bis zum 31.03. Drei Niedrigwasserperioden befinden sich so in je zwei verschiedenen Niedrigwasserjahren, aber es ist der bestmögliche Zeitpunkt als Startmonat für diese Station.

Die kleinsten Werte der monatlichen Minima der M7Q treten mehrheitlich in den Monaten Juli bis November auf (Abbildung 2). In der ganzen Zeitreihe der monatlichen Minima des Abflusses ist keine deutliche Veränderung erkennbar (Abbildung 3). Aus Abbildung 4 und Abbildung 5 ist zudem ersichtlich, dass auch die Zeitreihen der Niedrigwasserdauer bzw. des Defizitvolumens ein stabiles Verhalten aufweisen.

Die NM7Q werden basierend auf den Abflusstagesmittelwerten der Niedrigwasserjahre bestimmt und bewegen sich in der Beobachtungsperiode zwischen 1.21 und 8.10 m³/s (Abbildung 6).

Die Bruchpunktanalyse der NM7Q ergibt keinen signifikanten Bruchpunkt, weshalb die gesamte Beobachtungsperiode analysiert wird. Die Auswertungsperiode der Station Birs - Münchenstein, Hofmatt umfasst somit die Niedrigwasserjahre von 1917 bis 2018.

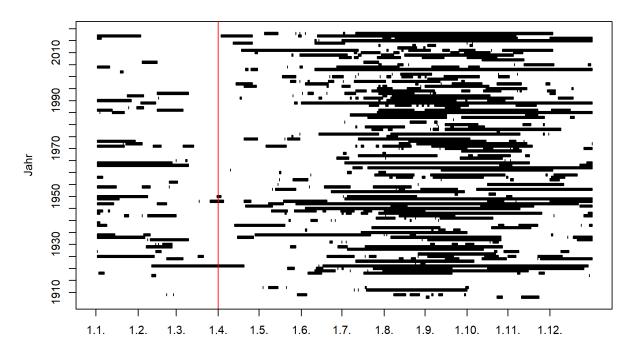


Abbildung 1: Zeitliches Auftreten der Niedrigwasserperioden im Jahresverlauf (01.04.1908 - 31.03.2019) und Startmonat des Niedrigwasserjahres (rote Linie) 1

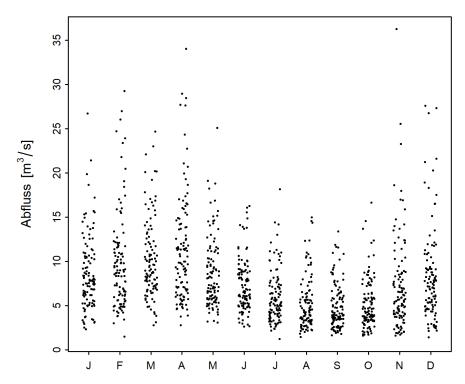


Abbildung 2: Saisonaler Verlauf der monatlichen Minima der M7Q $[m^3/s]$ (01.04.1908 - 31.03.2019)

 $^{^{1}\}mathrm{Der}\ \mathrm{Startmonat}\ \mathrm{des}\ \mathrm{Niedrigwassersjahres}\ \mathrm{wird}\ \mathrm{nur}\ \mathrm{anhand}\ \mathrm{der}\ \mathrm{Werte}\ \mathrm{der}\ \mathrm{Auswertungsperiode}\ \mathrm{bestimmt}.$

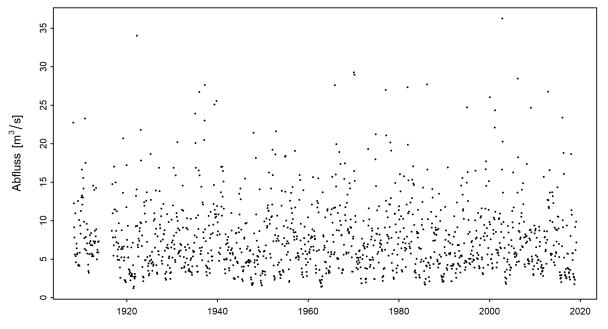


Abbildung 3: Zeitreihe der monatlichen Minima der M7Q $[\mathrm{m}^3/\mathrm{s}]$ (01.04.1908 - 31.03.2019)

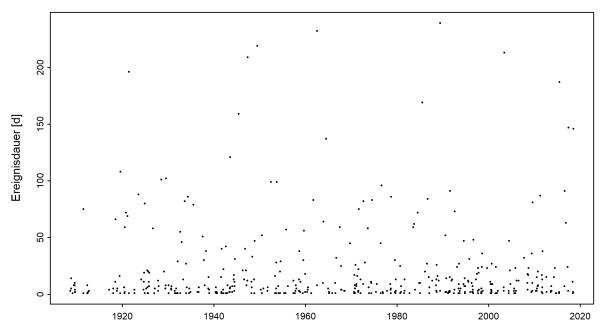


Abbildung 4: Zeitreihe der Niedrigwasserdauern [d] (01.04.1908 - 31.03.2019)

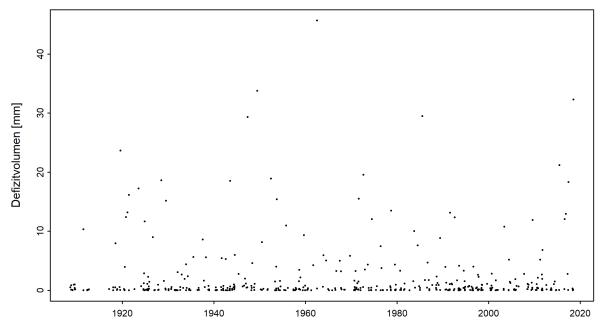


Abbildung 5: Zeitreihe der Defizitvolumen [mm] (01.04.1908 - 31.03.2019)

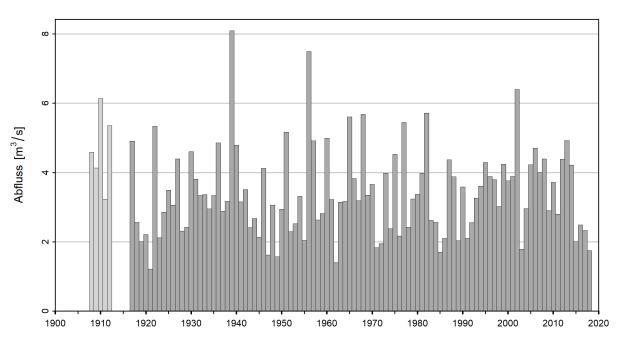


Abbildung 6: Zeitreihe der NM7Q [m³/s] (01.04.1908 - 31.03.2019), hellgrau: nicht verwendete NM7Q, dunkelgrau: verwendete NM7Q

2 Resultate der parametrischen Verfahren

Mit Hilfe von zwei parametrischen Verfahren (BLOCK- und POT-Ansatz) werden die Niedrigwasserwahrscheinlichkeiten NQ_T abgeschätzt. Die Niedrigwasserdauerwahrscheinlichkeiten ND_T und die Defizitvolumenwahrscheinlichkeiten DV_T werden anhand des POT-Ansatzes abgeschätzt.

Die beiden Ansätze unterscheiden sich in der Methode wie Extremwerte identifiziert werden. Sie basieren auf folgenden Modelleingangsdaten und Parametern:

Parametrisches Verfahren	Parameter	Modelleingangsdaten
Block Minimum (BLOCK)	μ Lageparameter	m NM7Q
	σ Skalenparameter	
	κ Formparameter	
Peaks Over Threshold (POT)	λ Ereignisrate	M7Q / Niedrigwasserdauern /
	σ Skalenparameter ²	${ m Defizitvolumen}$
	κ Formparameter	

Für beide parametrischen Ansätze wird jeweils der stationäre Fall berechnet. Das heisst, es wird angenommen, dass alle Parameter der Verteilungsfunktion über den gesamten Untersuchungszeitraum konstant sind. Wenn die Stationsgeschichte jedoch eine zeitliche Veränderung vermuten lässt, können die Parameter der entsprechenden Verteilungsfunktion zeitlich abhängig modelliert werden. Folgende, in Tabelle 1 und Tabelle 2 aufgeführten Modellvarianten werden verwendet:

Tabelle 1: Verwendete Modellvarianten des BLOCK-Ansatzes. μ Lageparameter (mu), σ Skalenparameter (sigma), κ Formparameter (kappa).

Modelly	Modellvarianten BLOCK				
\mathbf{Name}	Beschreibung	Parameter (t: Jahr)	Anzahl Parameter		
stat	Stationäre Variante	μ, σ, κ	3		
mul	Linearer Trend von μ	$\mu = a_1 + a_2 * t, \sigma, \kappa$	4		
muq	Quadratischer Trend von μ	$\mu=a_1+a_2*t+a_3*t^2,\sigma,\kappa$	5		
$_{ m sigl}$	Linearer Trend von σ	$\mu,\sigma=b_1+b_2*t,\kappa$	4		
musigl	Linearer Trend von μ und σ	$\mu = a_1 + a_2 * t, \sigma = b_1 + b_2 * t, \kappa$	5		
${ m mujump}$	Nicht-kontinuierliche Verände-	$\mu = a_1 + a_2 * i, \sigma, \kappa,$	4		
	rung von μ zum Zeitpunkt t $_0$	$i=0$ für $t < t_0, i=1$ für $t \geq t_0$			

Tabelle 2: Verwendete Modellvarianten des POT-Ansatzes. σ Lageparameter (sigma), κ Formparameter (kappa).

Modellvarianten POT					
\mathbf{Name}	${f Beschreibung}$	Parameter (t: Jahr)	Anzahl Parameter		
stat	Stationäre Variante	σ, κ	2		
sigl	Linearer Trend von σ	$\sigma = b_1 + b_2 * t, \kappa$	3		
$_{ m sigjump}$	Nicht-kontinuierliche Verände-	$\sigma = b_1 + b_2 * i, \kappa,$	3		
	rung von σ zum Zeitpunkt t $_0$	$i=0$ für $t < t_0, i=1$ für $t \geq t_0$			

Die Güte der Modellvarianten wird jeweils grafisch mit Hilfe eines Probability und eines Quantile Plots beurteilt (siehe z.B. Abbildung 7 und <u>Leitfaden</u> Kapitel 4.3). Je besser die Daten auf der Einheitsdiagonalen liegen, desto eher kann davon ausgegangen werden, dass die Modellannahmen korrekt sind. Anhand eines Ablaufschemas wird schliesslich entschieden, welches nicht-stationäre Modell allenfalls weiterverwendet wird (siehe Abbildung 8 im <u>Leitfaden</u> Kapitel 3.3). Im Folgenden sind jeweils die Verfahren mit den besten Resultaten aufgeführt.

 $^{^2}$ Der Skalenparameter σ des POT-Ansatzes ist numerisch nicht identisch mit dem σ des BLOCK-Ansatzes.

2.1 Niedrigwasserabfluss

2.1.1 Block Minimum Ansatz (BLOCK)

Der Block Minimum Ansatz (BLOCK) definiert den tiefsten Wert innerhalb eines Zeitintervalls (Block, im vorliegenden Fall ein Jahr) als Extremwert.

Das kleinste NM7Q der Analyseperiode beträgt $1.21~\mathrm{m}^3/\mathrm{s}$ (31.07.1921).

Die Regularitätsbedingungen werden aufgrund des besonders hohen NM7Q-Wert im Jahr 1939 verletzt. Die Berechnung der Maximum-Likelihood-Schätzer ist möglich, allerdings haben sie nicht die standardasymptotischen Eigenschaften.

Für die Auswertungsperiode (1917-2018) zeigt sich kein signifikanter Unterschied zwischen der stationären und den nicht-stationären Modellvarianten, weshalb hier die Resultate des stationären Modells präsentiert werden.

Anzahl Werte n	${\bf Lage parameter} \hat{\mu}$	Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
102	3.7	1.37	-0.53

Die Güte des Modells wird grafisch anhand der in Abbildung 7 dargestellten Diagnostikplots beurteilt.

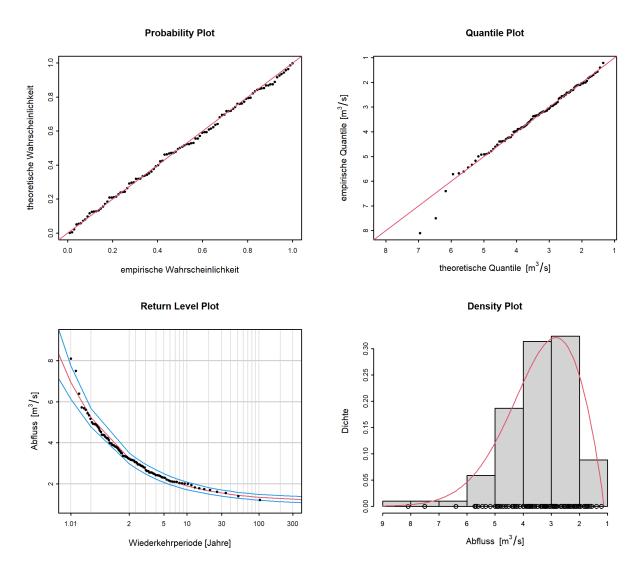


Abbildung 7: Diagnostikplots der Modellvariante "stat" des BLOCK-Ansatzes (01.04.1917 - 31.03.2019)

Bewertung Diagnostikplots (Abbildung 7):

Kriterien	${f Bewertung}^3$	Bemerkungen
Anpassung linker Bereich	$_{ m mittel}$	Die grössten Werte werden stark unterschätzt und
		liegen knapp ausserhalb des Konfidenzintervalls.
Anpassung mittlerer Bereich	gut	-
Anpassung rechter Bereich	gut	-
Konfidenzintervall	klein	-

 $^{^3}$ Siehe <u>Leitfaden</u> Kapitel 4.3

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären BLOCK-Ansatz über die Auswertungsperiode 01.04.1917 - 31.03.2019 (inkl. Konfidenzintervall berechnet über die Deltamethode):

$rac{ m NQ_T}{ m (NM7Q)}$	untere Konfidenzgrenze $[m^3/s]$	Abfluss $[m^3/s]$	obere Konfidenzgrenze $[m^3/s]$
$\overline{\mathrm{NQ}_2}$	2.94	3.24	3.54
$ m NQ_{10}$	1.69	1.90	2.11
NQ_{30}	1.38	1.55	1.72
$ m NQ_{100}$	1.19	1.35	1.51
$ m NQ_{300}$	1.08	1.25	1.42

2.1.2 Peaks Over Threshold Ansatz (POT)

Für den Peaks over Threshold Ansatz (POT) werden die M7Q ab dem 01.04.1917 analysiert. Als Schwellenwert u_{80} zur Abgrenzung von Niedrigwasserereignissen wird das 80%-Quantil der Abflussdauerkurve (Q_{80} bzw. Q_{292}) ausgewählt. An allen Tagen, an denen der Abfluss-Tagesmittelwert den Schwellenwert u_{80} von 5.67 m³/s unterschreitet, liegt ein Niedrigwasser vor.

Durch ein Declustering wird sichergestellt, dass zwei Niedrigwasserereignisse, bei denen das dazwischenliegende Überschussvolumen das vorangegangene Defizitvolumen egalisieren konnte, als unabhängig angesehen werden (s. <u>Leitfaden</u> Kapitel 1.3).

Jene Werte, die einen tieferen Schwellenwert u unterschreiten, gelten bei der Analyse der M7Q mit dem POT-Ansatz als Extremereignisse. Der Schwellenwert u wird in einem iterativen Vorgehen anhand verschiedener Kriterien bestimmt (s. Anhang A.1 und <u>Leitfaden</u> Kapitel 4.1). Abbildung 8 zeigt die M7Q, die festgelegten Schwellenwerte u₈₀ und u sowie die aufgrund des Schwellenwerts u definierten Extremereignisse (rote Kreise).

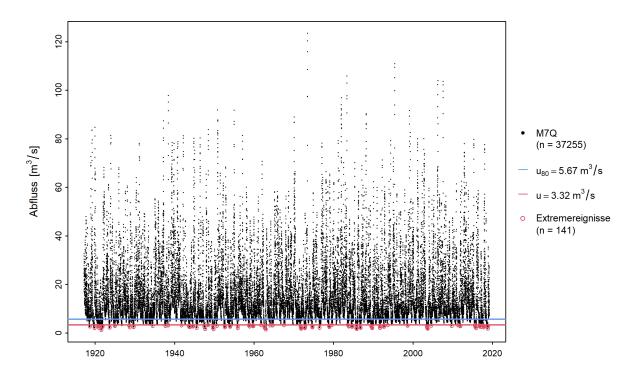


Abbildung 8: Auswahl der für den POT-Ansatz verwendeten Extremereignisse

Für die Auswertungsperiode (1917-2018) zeigt sich eine signifikante Verbesserung des Modells bei Verwendung der nicht-stationären Variante sigl. Daher wird anstelle der stationären Modellvariante die nicht-stationäre Variante sigl präsentiert.

Schwellenwert	Anzahl Werte	Skalenparameter $\hat{\sigma}^4$		Formparameter
u	${f n}$	$\mathbf{b_1}$	$\mathbf{b_2}$	$\hat{\kappa}$
$3.32~\mathrm{m^3/s}$	141	1.25	0	-0.5558

Die Güte des Modells wird grafisch anhand der in Abbildung 9 dargestellten Diagnostikplots beurteilt.

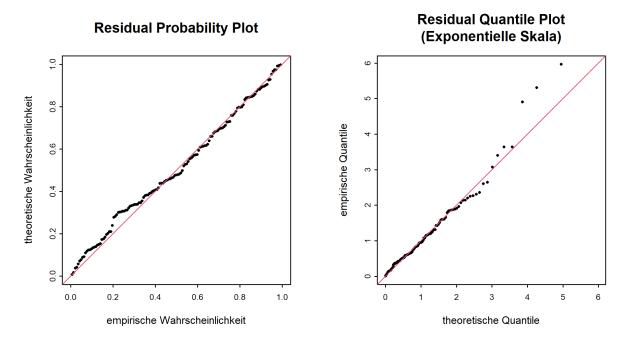


Abbildung 9: Diagnostik
plots der Modellvariante "sigl" des POT-Ansatzes (01.04.1917 - 31.03.2019)

Bewertung Diagnostikplots (Abbildung 9):

Kriterien	${f Bewertung}^5$	Bemerkungen
Anpassung linker Bereich	$\operatorname{mittel-gut}$	-
Anpassung mittlerer Bereich	$\operatorname{mittel-gut}$	-
Anpassung rechter Bereich	mittel	Die kleinsten Werte werden überschätzt.

Folgende Tabelle enthält die für das aktuellste Jahr (2018) bestimmten Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem nicht-stationären Modell sigl des POT-Ansatzes über die Auswertungsperiode 01.04.1917 - 31.03.2019 (inkl. Konfidenzintervall berechnet über die Deltamethode):

$\overline{\mathbf{NQ_T}}$	${f untere~Konfidenzgrenze~[m^3/s]}$	Abfluss $[m^3/s]$	obere Konfidenzgrenze $[m^3/s]$
(M7Q)			
$\overline{\mathrm{NQ}_2}$	2.33	2.46	2.59
$egin{array}{l} NQ_{10} \ NQ_{30} \end{array}$	1.85	1.97	2.09
NQ_{30}	1.71	1.81	1.92
$ m NQ_{100}$	1.62	1.72	1.83
NQ_{300}	1.58	1.68	1.78

 $^{^4\}hat{\sigma}=\,b_1\,+b_2^*t$ (s. Tabelle 1)

 $^{^5}$ Siehe <u>Leitfaden</u> Kapitel 4.3

2.1.3 Vergleich der verschiedenen Resultate

In Abbildung 10 und der zugehörigen Tabelle sind die Resultate des BLOCK- und des POT-Ansatzes zusammengefasst. Es werden die Modellvarianten gezeigt, die jeweils am besten an die Daten angepasst sind. Der Vergleich der verschiedenen Modellansätze zeigt folgende Sachverhalte auf:

Differenzen der Resultate der berechneten NQ_T der beiden parametrischen Ansätze:

Für NQ_2 weist der BLOCK-Ansatz einen deutlich grösseren Abfluss als der POT-Ansatz auf. Ab NQ_{10} zeigt der POT-Ansatz einen höheren Abfluss. Bei grösseren Wiederkehrperioden nimmt der Wert des BLOCK-Ansatzes stärker ab als der des POT-Ansatzes, wodurch sich die Unterschied zwischen den beiden Ansätzen vergrössern.

Differenzen der Resultate der berechneten Konfidenzintervalle der beiden parametrischen Ansätze:

Das Konfidenzintervall der Ergebnisse von beiden Ansätzen ist relativ klein für alle Wiederkehrperioden. Nur das Konfidenzintervall für NQ_2 des BLOCK-Ansatzes ist leicht grösser. Der POT-Ansatz zeigt dagegen für alle Wiederkehrperioden ein ähnlich kleines bis sehr kleines Konfidenzintervall.

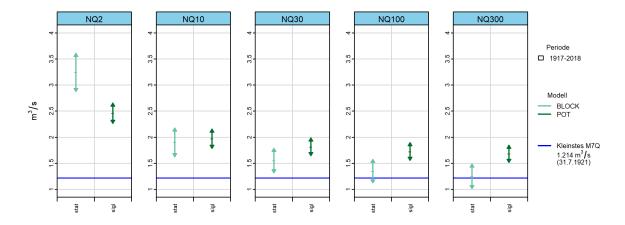


Abbildung 10: NQ_T [m³/s] inkl. 95%-Konfidenzintervalle, berechnet mit den jeweils bestangepassten Modellvarianten des BLOCK- und POT-Ansatzes

Folgende Tabelle enthält die Beurteilung der Modellgüte für die Auswertungsperiode 1917-2018:

Verfahren	Modellgüte Diagnostikplots		${f Bemerkung}$	
	${f Links}$	${\bf Mitte}$	${f Rechts}$	
BLOCK stat	mittel	gut	gut	-
POT sigl	$\operatorname{mittel-gut}$	$\operatorname{mittel-gut}$	mittel	Die kleinsten Werte werden überschätzt.

2.2 Niedrigwasserdauer

An allen Tagen, an denen der Abfluss-Tagesmittelwert den Schwellenwert u_{80} (80%-Quantil der Abfluss-dauerkurve) von 5.67 $\rm m^3/s$ unterschreitet, liegt ein Niedrigwasserereignis vor. Nach einem Declustering (s. Kapitel 2.1.2 und <u>Leitfaden</u> Kapitel 1.3) wird die Dauer der einzelnen Niedrigwasserereignisse bestimmt.

Jene Niedrigwasserdauern, welche den Schwellenwert u überschreiten, gelten bei dieser Analyse als Extremereignisse. Der Schwellenwert u wird in einem iterativen Vorgehen anhand verschiedener Kriterien bestimmt (s. Anhang A und <u>Leitfaden</u> Kapitel 4.1). Abbildung 11 zeigt die Niedrigwasserdauern und den festgelegten Schwellenwert u sowie die aufgrund des Schwellenwerts u ausgewählten Extremereignisse (rote Kreise).

Das längste Niedrigwasserereignis der Analyseperiode dauerte 233 Tage (06.06.1989 - 24.01.1990).

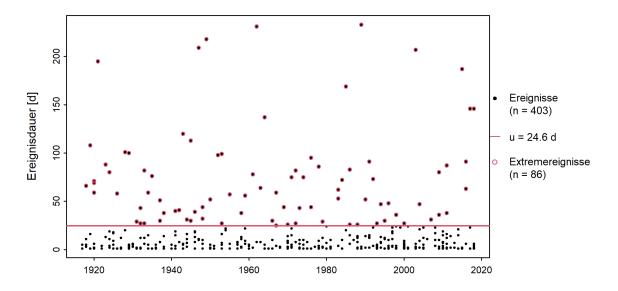


Abbildung 11: Auswahl der für den POT-Ansatz verwendeten Niedrigwasserdauer-Extremereignisse

Für die Auswertungsperiode (1917-2018) zeigt sich kein signifikanter Unterschied zwischen der stationären und den nicht-stationären Modellvarianten, weshalb hier die Resultate des stationären Modells präsentiert werden.

Schwellenwert	Anzahl Werte	Ereignisrate	Skalenparameter	Formparameter
\mathbf{u}	${f n}$	$\hat{\lambda}$	$\hat{\sigma}$	$\hat{\kappa}$
24.6 Tage	86	0.84	46.5	0.06

Die Güte des Modells wird grafisch anhand der in Abbildung 12 dargestellten Diagnostikplots beurteilt.

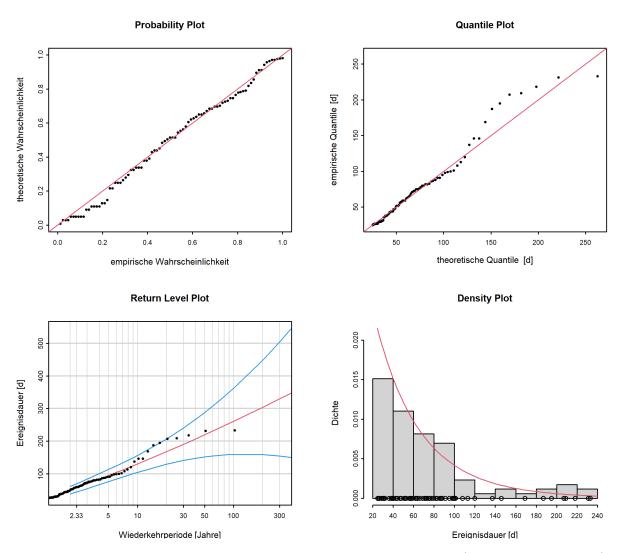


Abbildung 12: Diagnostikplots der Modellvariante "stat" des POT-Ansatzes (01.04.1917 - 31.03.2019)

Bewertung Diagnostikplots (Abbildung 12):

Kriterien	${f Bewertung}^6$	Bemerkungen
Anpassung linker Bereich	mittel-gut	-
Anpassung mittlerer Bereich	mittel	Einige Werte werden unterschätzt.
Anpassung rechter Bereich	$\operatorname{mittel-gut}$	<u>-</u>
${\bf Konfidenzintervall}$	mittel	Wird nach rechts hin grösser.

 $^{^6 {}m Siehe} \ {
m {\color{red} Leitfaden}} \ {
m Kapitel} \ 4.3$

Folgende Tabelle enthält die Niedrigwasserdauern für verschiedene Wiederkehrperioden, berechnet mit dem stationären POT-Ansatz über die Auswertungsperiode 01.04.1917 - 31.03.2019 (inkl. Konfidenzintervall berechnet über die Deltamethode):

$\overline{\mathrm{ND_{T}}}$	untere Konfidenzgrenze [d]	Dauer [d]	obere Konfidenzgrenze [d]
$\overline{\mathrm{ND}_2}$	36	49	62
ND_{10}	101	130	160
ND_{30}	133	190	247
ND_{100}	145	261	377
ND_{300}	130	329	529

2.3 Defizitvolumen

An allen Tagen, an denen der Abfluss-Tagesmittelwert den Schwellenwert u₈₀ (80%-Quantil der Abflussdauerkurve) von 5.67 m³/s unterschreitet, liegt ein Niedrigwasserereignis vor. Nach einem Declustering (s. Kapitel 2.1.2 und Leitfaden Kapitel 1.3) wird das Defizitvolumen der einzelnen Niedrigwasserereignisse bestimmt.

Jene Defizitvolumen, welche den Schwellenwert u überschreiten, gelten bei dieser Analyse als Extremereignisse. Der Schwellenwert u wird in einem iterativen Vorgehen anhand verschiedener Kriterien bestimmt (s. Anhang A und <u>Leitfaden</u> Kapitel 4.1). Abbildung 13 zeigt die Defizitvolumen und den festgelegten Schwellenwert u sowie die aufgrund des Schwellenwerts u ausgewählten Extremereignisse (rote Kreise).

Zur besseren Vergleichbarkeit der abgeschätzten Defizitvolumen der verschiedenen Stationen wird analog zum DWA(DVWK)-Verfahren 121 (1992) die Einheit Abflusshöhe $h_A[mm]$ gewählt. Diese ist wie folgt definiert:

$$h_A[mm] = \frac{V[m^3]}{A_E[km^2] * 1000} \tag{1}$$

wobei A_E der Einzugsgebietsfläche und V dem Defizitvolumen in m^3 entsprechen.

Die Einzugsgebietfläche dieser Station beträgt 887 km².

Das grösste Defizitvolumen der Analyseperiode beträgt 43.37 mm (19.07.1962 - 06.03.1963).

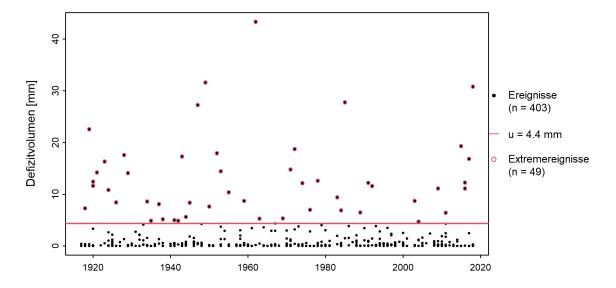


Abbildung 13: Auswahl der für den POT-Ansatz verwendeten Defizitvolumen-Extremereignisse

Für die Auswertungsperiode (1917-2018) zeigt sich kein signifikanter Unterschied zwischen der stationären und den nicht-stationären Modellvarianten, weshalb hier die Resultate des stationären Modells präsentiert werden.

Schwellenwert	Anzahl Werte	Ereignisrate	Skalenparameter	Formparameter
\mathbf{u}	${f n}$	$\hat{\lambda}$	$\hat{\sigma}$	$\hat{\kappa}$
4.4 mm	49	0.48	9.24	-0.08

Die Güte des Modells wird grafisch anhand der in Abbildung 14 dargestellten Diagnostikplots beurteilt.

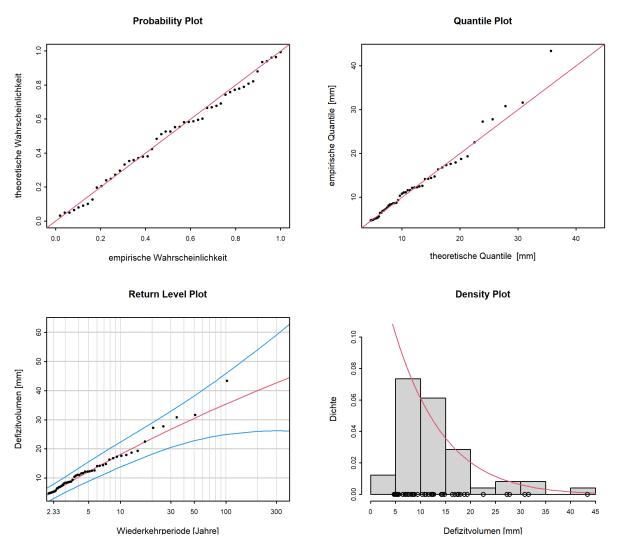


Abbildung 14: Diagnostikplots der Modellvariante "stat" des POT-Ansatzes (01.04.1917 - 31.03.2019)

Bewertung Diagnostikplots (Abbildung 14):

Kriterien	${f Bewertung}^7$	Bemerkungen
Anpassung linker Bereich	gut	-
Anpassung mittlerer Bereich	$\operatorname{mittel-gut}$	-
Anpassung rechter Bereich	$\operatorname{mittel-gut}$	-
${\bf Konfidenzintervall}$	klein-mittel	Wird im rechten Bereich leicht grösser.

 $^{^7 \}mathrm{Siehe} \ \underline{\mathrm{Leitfaden}} \ \mathrm{Kapitel} \ 4.3$

Folgende Tabelle enthält die Defizitvolumen für verschiedene Wiederkehrperioden, berechnet mit dem stationären POT-Ansatz über die Auswertungsperiode 01.04.1917 - 31.03.2019 (inkl. Konfidenzintervall berechnet über die Deltamethode):

$\overline{ m DV_T}$	untere Konfidenzgrenze [mm]	Defizitvolumen [mm]	obere Konfidenzgrenze [mm]
$\overline{\mathrm{DV}_2}$	1	4	7
DV_{10}	13	18	23
DV_{30}	20	27	34
DV_{100}	23	35	47
DV_{300}	24	43	62

3 Literatur

BAFU (2023). Leitfaden zu den Stationsberichten der Niedrigwasserstatistik. BAFU, Bern.

Baumgartner, E., Boldi, M.-O., Kan, C., Schick, S. (2013). Hochwasserstatistik am BAFU - Diskussion eines neuen Methodensets. Wasser Energie Luft, Heft 2/2013. Baden.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer. London.

DWA (2022). DVWA-Regelwerk. Merkblatt DWA-M 541. Statistische Analyse von Niedrigwasserkenngrössen.

DWA/DVWK (Hrsg.) (1983). DVWK-R 120 - Niedrigwasseranalyse. Teil 1. Statistische Untersuchung des Niedrigwasser-Abflusses. Deutscher Verband für Wasserwirtschaft und Kulturbau a.V., Hamburg/Berlin.

DWA/DVWK (Hrsg.) (1992). DVWK-R 121 - Niedrigwasseranalyse. Teil 2. Statistische Untersuchung der Unterschreitungsdauer und des Abflussdefizits. Deutscher Verband für Wasserwirtschaft und Kulturbau a.V., Hamburg/Berlin.

Hisdal, H., Tallaksen, L.M., Clausen, B., Peters, E., Gustard, A. (2004). Hydrological Drought Characteristics. Developments in Water Science 49, S. 139-198.

Anhang

A Bestimmung des Schwellenwerts zur Abgrenzung von Extremwerten

Zur Festlegung des Schwellenwerts u, welcher der Abgrenzung der Extremwerte des POT-Ansatzes dient, wird iterativ vorgegangen. Es werden der "mean residual life plot", der "fitrange plot" sowie die Anzahl Extremereignisse, die sich aus der Wahl eines Schwellenwertes ergeben, berücksichtigt.

A.1 Niedrigwasserabfluss

Der Schwellenwert u wurde auf 3.32 m³/s festgelegt. Anhand des mean residual life plots (s. Abbildung 15) wurde u zunächst tiefer gewählt, aber unter Berücksichtigung des fitrange plots und der Samplegrösse angepasst. So wird eine Samplegrösse von 141 Elementen erreicht.

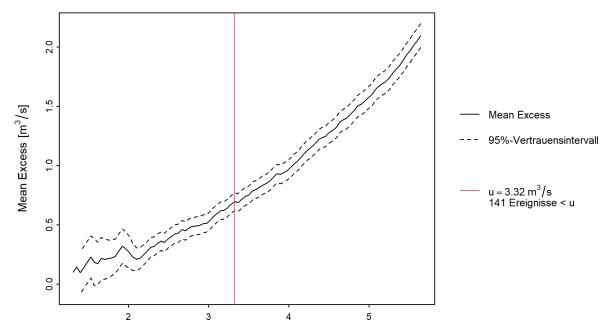


Abbildung 15: "mean residual life plot" für Niedrigwasserabfluss

A.2 Niedrigwasserdauer

Der Schwellenwert u wurde auf 24.6 Tage festgelegt. Anhand des mean residual life plots (s. Abbildung 16) wurde u zunächst höher gewählt, aber unter Berücksichtigung des fitrange plots angepasst. So wird eine Samplegrösse von 86 Elementen erreicht.

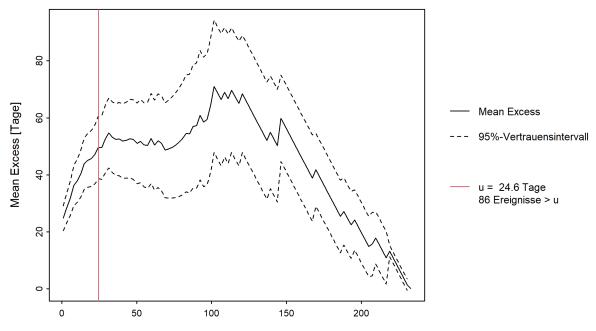


Abbildung 16: "mean residual life plot" für Niedrigwasserdauer

A.3 Defizitvolumen

Der Schwellenwert u wurde auf 4.4 mm festgelegt. Anhand des mean residual life plots (s. Abbildung 17) wurde u zunächst höher gewählt, aber unter Berücksichtigung des fitrange plots angepasst. So wird eine Samplegrösse von 49 Elementen erreicht.

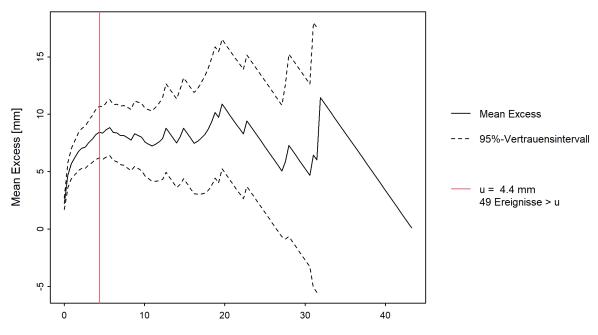


Abbildung 17: "mean residual life plot" für Defizitvolumen

B Glossar

Auswertungsperiode	Zeitlich begrenzter Zeitraum, aus welchem eine Stichprobe der Niedrigwasserabflüsse stammt, die als repräsentativ für die Grundgesamtheit angenommen wird. Es wird davon ausgegangen, dass die Eigenschaften der Grundgesamtheit mit dieser Stichprobe annähernd abgebildet werden.
Deltamethode	Das BAFU nutzt die Deltamethode zur Berechnung von Konfidenzintervallen in den Return Level Plots. Die Methode basiert auf einer Taylor-Entwicklung der Funktion der NQ_T (bzw. ND_T / DV_T) und einer asymptotischen Normalverteilung. (Für technische Details siehe Coles 2001, S. 33.)
Devianzstatistik	Mit der Devianzstatistik kann die Anpassungsgüte eines Modells für einen gegebenen Datensatz untersucht werden.
DV (Defizitvolumen)	Die Differenz zwischen dem Abfluss eines Niedrigwassertags und dem Schwellenwert u_{80} wird als Abflussdefizit bezeichnet. Die Summe aller Abflussdefizite innerhalb einer Niedrigwasserdauer bildet das Defizitvolumen. Zur besseren Vergleichbarkeit der abgeschätzten Defizitvolumen der verschiedenen Stationen wird das Defizitvolumen in die Einheit Abflusshöhe $h_A[mm]$ umgerechnet.
DV_{T}	Das mittels Verteilungsfunktion für eine vorgegebene Jährlichkeit T bestimmte Defizitvolumen $\mathrm{DV_T}$ ist ein Schätzwert, der über oder unter dem wahren Wert des Defizitvolumens mit statistisch gesehen T-jährlicher Wiederkehrperiode liegen kann. Die mit den parametrischen Verfahren berechneten $\mathrm{DV_T}$ gelten für eine ganze Periode (stationärer Fall) bzw. das aktuelle Berichtsjahr (nicht-stationärer Fall).
Güte, auch Anpassungs güte oder Anpassung	Mass für die Abweichung eines statistischen Modells (theoretische Werte) und einer Menge von Beobachtungen bzw. Messungen (empirische Daten).
Konfidenzintervall auch Vertrauensintervall	Konfidenzintervalle beschreiben die Unsicherheit des Outputs eines statistischen Modells. Sie berücksichtigen dabei den Fehler des Modells selbst, nicht aber weitere Unsicherheiten (z.B. Messfehler).
M7Q	über sieben Tage gemittelte Abflusswerte.
Maximum-Likelihood- Methode	Bezeichnung für ein Verfahren, das die Parameter einer Verteilungsfunktion aus den Informationen einer Stichprobe schätzt, indem der Maximum-Likelihood-Wert der Funktion maximiert wird.
ND (Niedrigwasserdauer)	Die Niedrigwasserdauer wird auf Basis der Niedrigwasserperioden wie folgt bestimmt: Mit dem "pooling together"-Verfahren werden abhängige Niedrigwasserperioden identifiziert und zusammengefügt. Dazu werden Defizitund Überschussvolumen betrachtet. Kann das Überschussvolumen zwischen zwei Niedrigwasserperioden die Defizitvolumen dieser Niedrigwasserperioden nicht kompensieren, so werden die beiden Niedrigwasserperioden als abhängige Ereignisse identifiziert und zu einer Niedrigwasserdauer zusammengefügt (für Details zum "pooling together"-Verfahren siehe Leitfaden Kapitel 1.3).
ND_{T}	Die mittels Verteilungsfunktion für eine vorgegebene Jährlichkeit T bestimmte Niedrigwasserdauer $\mathrm{ND_T}$ ist ein Schätzwert, der über oder unter dem wahren Wert der Niedrigwasserdauer mit statistisch gesehen Tjährlicher Wiederkehrperiode liegen kann. Die mit den parametrischen Verfahren berechneten $\mathrm{ND_T}$ gelten für eine ganze Periode (stationärer Fall) bzw. das aktuelle Berichtsjahr (nicht-stationärer Fall).

Nicht-Stationarität	Nicht-stationäre Modelle werden verwendet, um ein Abflussverhalten zu
	beschreiben, welches zeitlichen Änderungen unterliegt. Solche Änderungen können durch einen Wechsel der Messgeräte und Messmethoden, durch Stationsverlagerung, durch Gerinneveränderungen und durch anthropogene Einflüsse verursacht werden. Bei anthropogenen Einflüssen können die Veränderungen meist nicht einem einzelnen Eingriff zugeordnet werden, sondern sie bestehen aus Überlagerungen von verschiedenen, wasserwirtschaftlichen Massnahmen. Werden zeitliche Veränderungen der Daten vermutet, werden die Parameter der entsprechenden Verteilungsfunktion zeitlich abhängig modelliert. Dies führt dazu, dass sich auch die berechneten NQ_T (bzw. ND_T / DV_T) über die Zeit verändern.
Niedrigwasserperiode	Die Niedrigwasserperiode ist der Zeitraum, welcher am Tag, an dem der Abfluss den Schwellenwert u_{80} unterschreitet, beginnt und bis zum Tag, bevor der Schwellenwert u_{80} wieder überschritten wird, andauert.
Niedrigwassertag	Ein Tag, an welchem der Abfluss den Schwellenwert \mathbf{u}_{80} unterschreitet, ist ein Niedrigwassertag.
NM7Q	Die Niedrigwasserkenngrösse NM7Q gibt den kleinsten, über 7 aufeinanderfolgende Tage gemittelten Abfluss innerhalb eines Niedrigwasserjahres an, wobei als Datum jeweils der vierte Tag der betrachteten Tage angegeben wird (Bsp: NM7Q vom 1. Mai = Mittelwert vom 28. April - 4. Mai).
NQ_T	Der mittels Verteilungsfunktion für eine vorgegebene Jährlichkeit T bestimmte Niedrigwasserabfluss NQ_T ist ein Schätzwert, der über oder unter dem wahren Wert der Niedrigwasserabflüsse mit statistisch gesehen T-jährlicher Wiederkehrperiode liegen kann. Die mit den parametrischen Verfahren berechneten NQ_T gelten für eine ganze Periode (stationärer Fall) bzw. das aktuelle Berichtsjahr (nicht-stationärer Fall).
Parametrische Verfahren	Ein wichtiges Ziel der Statistik ist es mittels der Daten einer Stichprobe Aussagen über eine unbekannte Grundgesamtheit herzuleiten. Dafür eignen sich u. a. parametrische Verfahren, bei welchen angenommen wird, dass die Grundgesamtheit eine vorgegebene Wahrscheinlichkeitsverteilung besitzt, welche durch einen oder mehrere Parameter eindeutig bestimmt ist. Die beiden betrachteten Verfahren stützen sich auf die Allgemeine Extremwertverteilung (BLOCK), bzw. auf die Allgemeine Pareto-Verteilung (POT), weil diese Verteilungen die Natur der Daten (Blockminima, bzw. Daten ab einem gewissen Schwellwert) am besten reflektieren (siehe Coles 2001).
Block-Minimum-Ansatz (BLOCK)	Der Block Minimum Ansatz (BLOCK) definiert den tiefsten Abflusswert innerhalb eines Zeitintervalls (Block, im vorliegenden Fall ein Jahr) als Extremwert (siehe <u>Leitfaden</u> Kapitel 3.1 oder Coles 2001, Kapitel 3.1).
Peaks-Over-Threshold Ansatz (POT)	Beim Peaks-Over-Threshold-Ansatz (POT) gelten Werte als Extremereignisse, wenn sie einen gewissen Schwellenwert u ₈₀ überschreiten (bei M7Q wenn sie einen Schwellenwert u ₈₀ unterschreiten). Die verwendeten Daten werden vorgängig von Clustern befreit (siehe <u>Leitfaden</u> Kapitel 3.2, oder Coles 2001, Kapitel 4.2).
Probability Plot (P-P-Plot)	Exploratives, grafisches Werkzeug, in dem die Verteilungsfunktionen zweier statistischer Variablen gegeneinander abgetragen werden, um ihre Verteilungen zu vergleichen. Hier: aufsummierte empirische Häufigkeiten vs. die theoretische, kumulierte Verteilungsfunktion. Je besser die Daten auf der Einheitsdiagonale liegen, desto eher kann davon ausgegangen werden, dass die Modellannahmen korrekt sind. (Enthält die gleichen Informationen wie der Q-Q-Plot, dargestellt auf einer unterschiedlichen Skala.)

Quantile Plot (Q-Q-Plot)	Exploratives, grafisches Werkzeug, in dem die Quantile zweier statistischer Variablen gegeneinander abgetragen werden, um ihre Verteilung zu vergleichen. Hier: beobachtete Abflusswerte (bzw. Niedrigwasserdauern / Defizitvolumen) vs. die mit Hilfe eines Modells berechneten Abflussdaten. Stimmen die empirischen und theoretischen Quantile annähernd überein, liegen die Werte in der Grafik nahe der Diagonalen. (Enthält die gleichen Informationen wie der P-P-Plot, dargestellt auf einer unterschiedlichen Skala.) Hinweis: Die theoretischen Quantile werden aus der Umkehrfunktion der Verteilungsfunktion berechnet. Für den direkten, optischen Vergleich mit dem entsprechenden Probability Plot sind die Achsen des Quantile Plots daher vertauscht.
Stationarität	Beobachtet man bei einer Messstation, dass sich das Abflussverhalten über die Beobachtungsperiode nicht wesentlich ändert, so empfiehlt es sich, ein stationäres Modell zu verwenden. Im stationären Fall wird angenommen, dass alle Parameter der Verteilungsfunktion über den gesamten Untersuchungszeitraum konstant sind.
${ m Verteilungs funktion}$	Beschreibt die Grundgesamtheit der Niedrigwasserabflüsse (bzw. Niedrigwasserdauern / Defizitvolumen) eines Einzugsgebiets. Die Verteilungsfunktion gibt die Wahrscheinlichkeiten an, dass ein Niedrigwasserabfluss NQ (bzw. eine Niedrigwasserdauer ND / ein Defizitvolumen DV) in einem Jahr erreicht oder überschritten wird.
Empirische Häufigkeits- verteilung	Kann aus der gewählten Stichprobe bestimmt werden.
Theoretische Wahr- scheinlichkeits- verteilung	Schliesst von der gewählten Stichprobe auf die Grundgesamtheit. Es gibt viele verschiedene theoretische Verteilungsfunktionen, welche die Voraussetzungen für die Anwendung in der Niedrigwasserstatistik erfüllen, aber keine, die für alle Stichproben die besten Resultate gewährleistet.
Verteilungsparameter	
λ Ereignisrate (lambda)	Beim POT-Ansatz entspricht die Ereignisrate λ der mittleren Anzahl der Unterschreitungen des Schwellenwerts u (bzw. Überschreitungen bei den M7Q) während des Zeitintervalls von einem Jahr.
κ Formparameter (kappa)	Der Formparameter κ steht in direktem Zusammenhang mit der sogenanten "Heaviness of Tail" der Verteilung. Als Tail wird der Bereich mit den Ausreissern nach oben (bzw. bei den M7Q der Bereich mit den Ausreissern nach unten) bezeichnet. Ist κ gross, so werden viele solche Ausreisser angenommen. Bei negativen Werten für κ hingegen wird angenommen, dass für die Extremwerte eine obere (bzw. bei M7Q untere) Schranke existiert.
μ Lageparameter (mu)	Beschreibt beim BLOCK-Ansatz die mittlere Lage der Stichprobenelemente (hier: NM7Q) in Bezug auf die Messskala (hier: $\rm m^3/s$ bzw. $\rm l/s$).
σ Skalenparameter (sigma)	Mass für die Varianz einer Verteilungsfunktion.