

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Umwelt BAFU

HOCHWASSERSTATISTIK

STATIONSBERICHT

Rhein - Basel

weitere Erläuterungen: $\underline{\text{Leitfaden}}$ Kontakt: $\underline{\text{hydroanalysen@bafu.admin.ch}}$

Inhaltsverzeichnis

1	Dat	tengrundlage	2
2	Res	sultate der parametrischen Verfahren	Ę
	2.1	Block Maximum Ansatz (BLOCK)	6
		2.1.1 Gesamte Auswertungsperiode: 1870-2015	
		2.1.1.a Stationäre Modellvariante	
		2.1.1.b Nicht stationäre Modellvariante	
		2.1.2 Vergleichsperiode: 1995-2015	
		2.1.2.a Stationäre Modellvariante	
		2.1.3.a Stationäre Modellvariante	
		2.1.3.b Nicht stationäre Modellvariante	
	2.2	(- 0 -)	
		2.2.1 Auswertungsperiode POT: 1995-2015	
		2.2.1.a Stationäre Modellvariante	15
3	Ver	rgleich der verschiedenen Resultate	18
•	3.1	Beurteilung der unterschiedlichen Auswertungsperioden	
	3.2	Allgemeiner Vergleich der verschiedenen Modellansätze	
	3.2	Angemenier vergieich der verschiedenen modenansatze	10
4	Lite	eratur	20
\mathbf{A}	nhan	ng	21
	Α	Bestimmung des Schwellenwerts zur Abgrenzung von Extremwerten	21
	В	Glossar	

1 Datengrundlage

Es stehen die folgenden Abflussdaten für die extremwertstatistischen Auswertungen zur Verfügung:

Vorhandene Daten	seit	bis
Digitale Monatsmaxima	01.01.1869	31.12.2015
Digitale Tagesmaxima	01.01.1995	31.12.2015

Ein Limnigraph wurde am 31. Mai 1869 in Betrieb genommen. Von Messbeginn bis zum 31.12.1944 wurden die Messungen bei der Station "2001/00001: Rhein - Basel, Schifflände" durchgeführt, ab dem 01.01.1945 bis zum 31.12.1982 bei der Station "2220/00736 Rhein - Basel, St. Alban", zwischen dem 01.01.1983 und dem 31.12.1994 wieder bei der Station "2001/00001 Rhein - Basel, Schifflände" und seit dem 01.01.1995 am heutigen Standort. Die Messreihen wurden aneinandergehängt, um eine kontinuierliche Reihe zu erhalten, welche für den vorliegenden Stationsbericht verwendet wird. Die digitalen Tagesmaxima sind erst seit Inbetriebnahme der aktuellen Station 1995 verfügbar.

Für die Auswertungen werden entweder die mit Limnigraph erfassten vollständigen Jahre der Monatsmaxima oder die digitalen Tagesmaxima verwendet (siehe Kapitel 2).

Der grösste Abfluss wurde wie folgt beobachtet:

Grösste Abflussspitze	Datum	Abfluss
Grösstes Monatsmaximum	12.05.1999	$5085 \text{ m}^3/\text{s}$
Grösstes Tagesmaximum	12.05.1999	$5085 \text{ m}^3/\text{s}$

Die Abflussdaten können folgendermassen charakterisiert werden:

Abflussverlauf	Beschreibung
Abflussregime	Nicht eindeutig klassifizierbar: Hohe Abflüsse im Sommer, tiefe Abflüsse
	im Winter
Ausprägung der Saisonalität	In Monats- und Tagesmaxima deutlich zu erkennen (Abbildung 3 und
	Abbildung 4)
Beeinflussung	Beeinflussung durch zahlreiche Kraftwerke und Seeregulierungen im ge-
	samten Einzugsgebiet. Stärkste Beeinflussung des Abflusses durch die
	erste Juragewässerkorrektion zwischen 1868 und 1891. Seither deutliche
	Reduktion extremer Jahresmaxima (siehe Abbildung 1). Weitere Beein-
	flussungen im Gebiet haben keine grosse Auswirkungen auf die Monats-
	und Jahresmaxima.

Die Jahresmaxima bewegen sich zwischen ungefähr 1500 und 5000 m³/s, wobei die Werte in diesem Bereich stark streuen. Seit ungefähr 1891 ist die Dichte grosser Jahresmaxima kleiner, zudem wurden die höchsten zwei Werte in der Zeit davor registriert. Dies weist einen Zusammenhang mit der ersten Juragewässerkorrektion auf, im Zuge derer die Seen und Abflüsse im Seeland reguliert wurden, was in Basel trotz erheblicher Distanz noch deutliche Auswirkungen zeigt. Die Bruchpunktanalyse ergibt einen nicht signifikanten Bruchpunkt um 1977 (Konfidenzintervall 1946-2011). Seither ist wieder eine Zunahme von Jahresmaxima über 4000 m³/s zu beobachten, allerdings ist dieser Bruchpunkt aus hydrologischer Sicht nicht zu erklären. Aufgrund der überregionalen Bedeutung der Juragewässerkorrektion und dem Einfluss auf die grössten Jahresmaxima wird die Datenreihe ab 1891 unterteilt und eine Auswertungsperiode ab Bruchpunkt berücksichtigt.

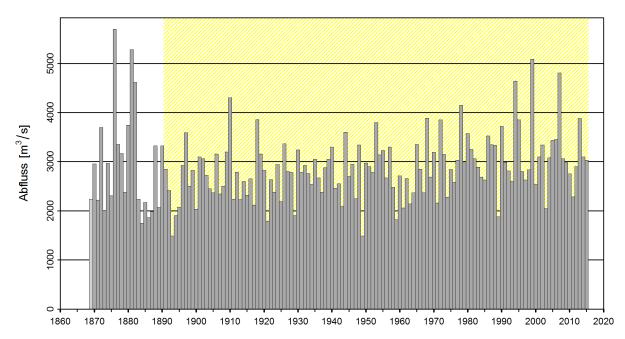


Abbildung 1: Zeitreihe der Jahresmaxima $[m^3/s]$ (1869 - 2015, hellgrau: nicht für die Statistik verwendete Jahresmaxima, dunkelgrau: verwendete Jahresmaxima der gesamten Auswertungsperiode ab Limnigrapheninstallation). Gelb schraffiert: Auswertungsperiode ab Bruchpunkt (1891 - 2015)

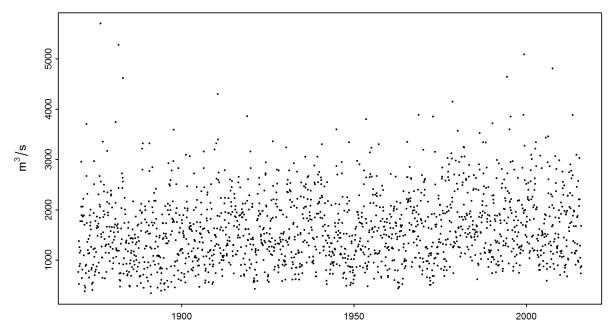


Abbildung 2: Zeitreihe der Monatsmaxima $[\mathrm{m}^3/\mathrm{s}]~(01.01.1870$ - 31.12.2015)

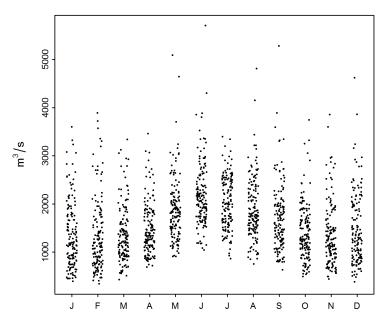


Abbildung 3: Saisonaler Verlauf der Monatsmaxima $[\mathrm{m}^3/\mathrm{s}]~(01.01.1870$ - 31.12.2015)

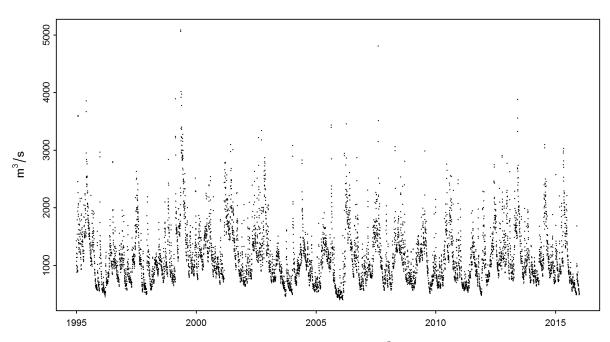


Abbildung 4: Zeitreihe der maximalen Tagesabflüsse $[\mathrm{m}^3/\mathrm{s}]~(01.01.1995$ - 31.12.2015)

Fazit für die Modellvarianten

Veränderungen	Auswirkungen	Folgerungen
Juragewässerkorrektion 1891	Weniger extreme Jahresmaxima	Vermutlich nicht stationär

Bruchpunktanalyse

Jahr	Signifikanter Bruchpunkt	Folgerungen
1890 / 1891	nein	Unterteilung der Daten, da der Bruchpunkt in Daten
		sichtbar und mit Unterlagen zu Einzugsgebiet (Jurage-
		wässerkorrektion) begründbar ist

2 Resultate der parametrischen Verfahren

Mit Hilfe von zwei parametrischen Verfahren (BLOCK- und POT-Ansatz) werden Hochwasserwahrscheinlichkeiten HQ_T abgeschätzt. Die beiden Ansätze unterscheiden sich in der Methode wie Extremwerte identifiziert werden. Sie basieren auf folgenden Modelleingangsdaten und Parametern:

Parametrisches Verfahren	Pa	arameter	Modelleingangsdaten
Block Maximum (BLOCK)	μ	Lageparameter	Jahresmaxima
	σ	Skalenparameter	
	κ	Formparameter	
Peaks Over Threshold (POT)	λ	Ereignisrate	Tagesmaxima
	σ	$Skalenparameter^1$	
	κ	Formparameter	

Für beide parametrischen Ansätze wird jeweils der stationäre Fall berechnet. Das heisst es wird angenommen, dass alle Parameter der Verteilungsfunktion über den gesamten Untersuchungszeitraum konstant sind. Wenn die Stationsgeschichte jedoch eine zeitliche Veränderung vermuten lässt, können die Parameter der entsprechenden Verteilungsfunktion zeitlich abhängig modelliert werden. Folgende, in Tabelle 1 und Tabelle 2 aufgeführten Modellvarianten werden verwendet:

Tabelle 1: Verwendete Modellvarianten des BLOCK-Ansatzes. μ Lageparameter (mu), σ Skalenparameter (sigma), κ Formparameter (kappa)

Modellvarianten BLOCK					
Name	Beschreibung	Parameter (t: Jahr)	Anzahl Parameter		
stat	Stationäre Variante	μ, σ, κ	3		
mul	Linearer Trend von μ	$\mu = a_1 + a_2 * t, \sigma, \kappa$	4		
muq	Quadratischer Trend von μ	$\mu = a_1 + a_2 * t + a_3 * t^2, \sigma, \kappa$	5		
sigl	Linearer Trend von σ	$\mu, \sigma = b_1 + b_2 * t, \kappa$	4		
musigl	Linearer Trend von μ und σ	$\mu = a_1 + a_2 * t, \sigma = b_1 + b_2 * t, \kappa$	5		
mujump	Nicht-kontinuierliche Verände-	$\mu = a_1 + a_2 * i, \sigma, \kappa,$	4		
	rung von μ zum Zeitpunkt t_0	$i = 0$ für $t < t_0, i = 1$ für $t \ge t_0$			

Tabelle 2: Verwendete Modellvarianten des POT-Ansatzes. σ Lageparameter (sigma), κ Formparameter (kappa)

Modellvarianten POT					
Name	Beschreibung	Parameter (t: Jahr)	Anzahl Parameter		
stat	Stationäre Variante	σ, κ	2		
sigl	Linearer Trend von σ	$\sigma = b_1 + b_2 * t, \kappa$	3		
sigjump	Nicht-kontinuierliche Verände-	$\sigma = b_1 + b_2 * i, \kappa,$	3		
	rung von σ zum Zeitpunkt \mathbf{t}_0	$i = 0$ für $t < t_0, i = 1$ für $t \ge t_0$			

Die Güte der Modellvarianten wird jeweils grafisch mit Hilfe eines Probability und eines Quantile Plots beurteilt (siehe z.B. Abbildung 5 oben und <u>Leitfaden</u> Kapitel 2.2.3). Je besser die Daten auf der Einheitsdiagonale liegen, desto eher kann davon ausgegangen werden, dass die Modellannahmen korrekt sind. Anhand eines Ablaufschemas wird schliesslich entschieden, welches nicht stationäre Modell allenfalls weiterverwendet wird (siehe Abbildung 5 im <u>Leitfaden</u> Kapitel 2.1.3). Im Folgenden sind jeweils die Verfahren mit den besten Resultaten aufgeführt.

 $^{^1\}mathrm{Der}$ Skalenparameter σ des POT-Ansatzes ist numerisch nicht identisch mit dem σ des BLOCK-Ansatzes.

2.1 Block Maximum Ansatz (BLOCK)

Der Block Maximum Ansatz (BLOCK) definiert den höchsten Wert innerhalb eines Zeitintervalls (Block, im vorliegenden Fall ein Jahr) als Extremwert.

Folgende Varianten des BLOCK-Ansatzes werden in diesem Bericht beschrieben:

Auswertungs- periode	Beschreibung	ausgewählte Modellvariante	Kapitel
1870 - 2015	gesamte Auswertungsperiode	stat	Kapitel 2.1.1.a
		mul	Kapitel 2.1.1.b
1995 - 2015	Vergleichsperiode	stat	Kapitel 2.1.2.a
1891 - 2015	Auswertungsperiode ab Bruchpunkt	stat	Kapitel 2.1.3.a
		mujump	Kapitel 2.1.3.b

2.1.1 Gesamte Auswertungsperiode: 1870-2015

2.1.1.a Stationäre Modellvariante

Verfahren	Modellvariante	Auswertungsperiode	Modelleingangsdaten	Bemerkung
BLOCK	stat	1870-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}$	Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
146	2583.24	586.87	-0.0525

Die Güte der Modellvariante "stat" über die gesamte Auswertungsperiode wird grafisch anhand der in Abbildung 5 dargestellten Diagnostikplots beurteilt.

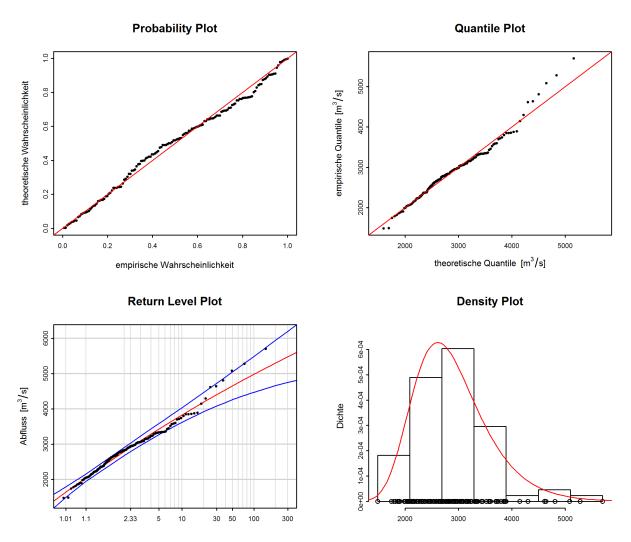


Abbildung 5: Diagnostikplots der Modellvariante "stat" des BLOCK-Ansatzes (1870-2015)

Bewertung Diagnostikplots (Abbildung 5):

Kriterien	$\mathbf{Bewertung}^2$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut-mittel	etwas erhöhte Streuung der Werte
Anpassung oberer Bereich	schlecht	die obersten sechs Werte unterschätzt
Konfidenzintervall	klein	-

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären BLOCK-Ansatz über die gesamte Auswertungsperiode 1870-2015 (inkl. 95% - Konfidenzintervall berechnet über die Deltamethode):

HQ_T	untere Konfidenzgrenze [m ³ /s]	Abfluss [m ³ /s]	obere Konfidenzgrenze [m ³ /s]
HQ_2	2682	2796	2910
HQ_{10}	3624	3829	4034
HQ_{30}	4081	4403	4725
HQ_{100}	4474	4982	5489
HQ_{300}	4751	5475	6199

 $^{^2 {\}rm Siehe} \ \underline{{\rm Leitfaden}} \ {\rm Kapitel} \ 2.2.3$

2.1.1.b Nicht stationäre Modellvariante

Der Vergleich der verschiedenen Modellvarianten des BLOCK-Ansatzes über die gesamte Auswertungsperiode zeigt, dass sich die Modelle "mul", "muq" und "musigl" signifikant vom stationären Modell ("stat") unterscheiden. Aufgrund des im Ablaufschema beschriebenen Vergleichsansatzes verschiedener nicht stationärer Modellvarianten kommt "mul" als bestes nicht stationäres Modell in Frage. Die Unterschiede zwischen den Modellen sind nur geringfügig. Daher werden im Folgenden die Resultate von "mul" dargestellt (siehe Abbildung 5 im Leitfaden).

Verfahren	Modellvariante	Auswertungsperiode	Modelleingangsdaten	Bemerkung
BLOCK	mul	1870-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}^4$		Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
	$\mathbf{a_1}$	$\mathbf{a_2}$		
146	2345.99	3.57	608.44	-0.0437

Die Güte der Modellvariante "mul" über die gesamte Auswertungsperiode wird grafisch anhand der in Abbildung 6 dargestellten Diagnostikplots beurteilt.

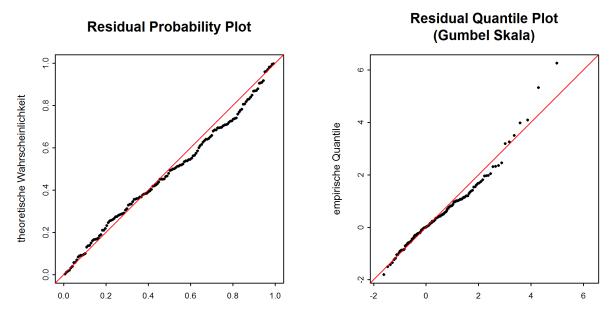


Abbildung 6: Diagnostikplots der Modellvariante "mul" des BLOCK-Ansatzes (1870-2015)

Bewertung Diagnostikplots (Abbildung 6):

Kriterien	${f Bewertung}^5$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut-mittel	etwas erhöhte Streuung der Werte
Anpassung oberer Bereich	mittel	die obersten zwei Werte unterschätzt
Vergleich mit stationärem Modell	verbessert	die meisten Werte liegen näher an Einheitsdia-
		gonale

³Als Zeitpunkt t₀ für das Modell "mujump" wird aufgrund des Resultats der Bruchpunktanalyse das Jahr 1891 gewählt (siehe Kapitel 1).

 $^{{}^{4}\}hat{\mu} = a_1 + a_2 * t \text{ (s. Tabelle 1)}$

⁵Siehe <u>Leitfaden</u> Kapitel 2.2.3

Folgende Tabelle enthält die für das aktuellste Jahr (2015) bestimmten Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit der Modellvariante "mul" des BLOCK-Ansatzes über die gesamte Auswertungsperiode 1870-2015 (inkl. 95%-Konfidenzintervall berechnet über die Deltamethode):

$\overline{\mathbf{HQ_{T}}}$	untere Konfidenzgrenze [m ³ /s]	Abfluss [m ³ /s]	obere Konfidenzgrenze [m ³ /s]
$\overline{\mathrm{HQ}_2}$	2876	3088	3300
HQ_{10}	3871	4171	4471
HQ_{30}	4353	4781	5208
HQ_{100}	4764	5402	6040
HQ_{300}	5048	5937	6826

In Abbildung 7 ist die Veränderung des mit dem Modell "mul" berechneten HQ_{100} zwischen 1870 und 2015 dargestellt.

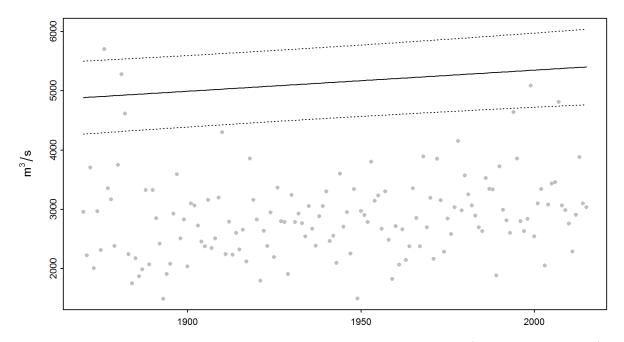


Abbildung 7: Veränderung der mit der Modellvariante "mul" berechneten HQ_{100} (durchgezogene Linien) und des 95%-Konfidenzintervalls (Deltamethode; gestrichelte Linien) über die Jahre 1870-2015

2.1.2 Vergleichsperiode: 1995-2015

2.1.2.a Stationäre Modellvariante

Verfahren	Modellvariante	Auswertungsperiode	Modelleingangsdaten	Bemerkung
BLOCK	stat	1995-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}$	Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
21	2875.9	550.34	0.0054

Die Güte der Modellvariante "stat" über die Vergleichsperiode wird grafisch anhand der in Abbildung 8 dargestellten Diagnostikplots beurteilt.



Abbildung 8: Diagnostikplots der Modellvariante "stat" des BLOCK-Ansatzes (1995-2015)

Bewertung Diagnostikplots (Abbildung 8):

Kriterien	${f Bewertung}^6$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut-mittel	etwas erhöhte Streuung der Werte
Anpassung oberer Bereich	schlecht	oberste Werte unterschätzt; >HQ20 unbekannt
Konfidenzintervall	gross	für grosse Wiederkehrperioden sehr gross

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären BLOCK-Ansatz über die Vergleichsperiode 1995-2015 (inkl. 95% - Konfidenzintervall berechnet über die Deltamethode):

$\overline{\mathrm{HQ_{T}}}$	untere Konfidenzgrenze [m ³ /s]	Abfluss [m ³ /s]	obere Konfidenzgrenze [m ³ /s]
$\overline{\mathrm{HQ}_2}$	2788	3078	3368
HQ_{10}	3527	4122	4717
HQ_{30}	3739	4755	5772
HQ_{100}	3725	5439	7154
HQ_{300}	3498	6063	8628

 $^{^6{\}rm Siehe}$ <u>Leitfaden</u> Kapitel 2.2.3

2.1.3 Auswertungsperiode ab Bruchpunkt: 1891-2015

2.1.3.a Stationäre Modellvariante

Verfahren	Modellvariante	Auswertungsperiode	Modelleingangsdaten	Bemerkung
BLOCK	stat	1891-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}$	Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
125	2612.36	556.2	-0.1202

Die Güte der Modellvariante "stat" über die Auswertungsperiode ab Bruchpunkt wird grafisch anhand der in Abbildung 9 dargestellten Diagnostikplots beurteilt.

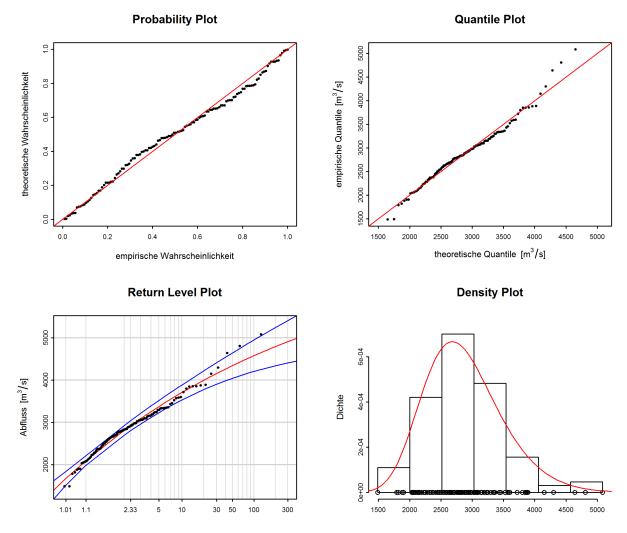


Abbildung 9: Diagnostikplots der Modellvariante "stat" des BLOCK-Ansatzes (1891-2015)

Bewertung Diagnostikplots (Abbildung 9):

Kriterien	$\mathbf{Bewertung}^7$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut	-
Anpassung oberer Bereich	mittel-schlecht	die obersten drei Werte unterschätzt
Konfidenzintervall	klein	-

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären BLOCK-Ansatz über die Auswertungsperiode ab Bruchpunkt 1891-2015 (inkl. 95% - Konfidenzintervall berechnet über die Deltamethode):

$\overline{\mathrm{HQ_{T}}}$	untere Konfidenzgrenze [m ³ /s]	Abfluss [m ³ /s]	obere Konfidenzgrenze [m ³ /s]
HQ_2	2699	2812	2925
HQ_{10}	3532	3709	3886
HQ_{30}	3905	4159	4413
HQ_{100}	4206	4578	4949
HQ_{300}	4406	4908	5410

2.1.3.b Nicht stationäre Modellvariante

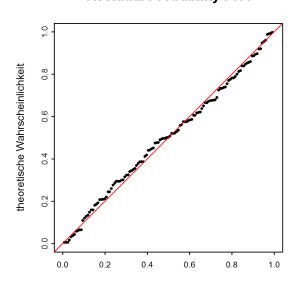
Der Vergleich der verschiedenen Modellvarianten des BLOCK-Ansatzes über die Periode ab Bruchpunkt zeigt, dass sich die Modelle "mul", "muq" und "mujump" signifikant vom stationären Modell ("stat") unterscheiden. Am besten schneidet dabei die Variante "mujump" ab, deren Resultate im Folgenden dargestellt sind (siehe Abbildung 5 im Leitfaden).

Verfahren	Modellvariante	Auswertungsperiode	${f Modelleing angsdaten}$	Bemerkung
BLOCK	mujump1968	1891-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}^9$		Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
	$\mathbf{a_1}$	$\mathbf{a_2}$		
125	2478.82	397.67	529.99	-0.1362

Die Güte der "mujump
1968" Modellvariante über die Auswertungsperiode ab Bruchpunkt wird grafisch anhand der in Abbildung 10 dargestellten Diagnostik
plots beurteilt.


⁷Siehe <u>Leitfaden</u> Kapitel 2.2.3

 $^{^8}$ Als Zeitpunkt t_0 für das Modell "mujump" wird aufgrund des Resultats der Bruchpunktanalyse der Periode ab Bruchpunkt das Jahr 1968 gewählt.

 $^{{}^{9}\}hat{\mu} = a_1 + a_2 *i$, i = 0 für $t < t_0$, i = 1 für $t \ge t_0$ (s. Tabelle 1)

Residual Probability Plot

Residual Quantile Plot (Gumbel Skala)

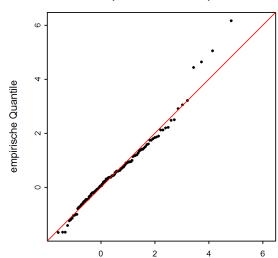


Abbildung 10: Diagnostikplots der Modellvariante "mujump1968" des BLOCK-Ansatzes (1891-2015)

Bewertung Diagnostikplots (Abbildung 10):

Kriterien	${\bf Bewertung}^{10}$	Bemerkungen
Anpassung unterer Bereich	gut	BNsBPukom
Anpassung mittlerer Bereich	gut	BNsBPmkom
Anpassung oberer Bereich	schlecht	die obersten vier Werte unterschätzt
Vergleich mit stationärem Modell	verschlechtert	oberste Werte liegen weiter weg von Einheits-
-		diagonale

Folgende Tabelle enthält die für das aktuellste Jahr (2015) bestimmten Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit der Modellvariante "mujump1968" des BLOCK-Ansatzes über die Auswertungsperiode ab Bruchpunkt 1891-2015 (inkl. 95%-Konfidenzintervall berechnet über die Deltamethode):

$\mathbf{HQ_{T}}$	untere Konfidenzgrenze $[m^3/s]$	Abfluss $[m^3/s]$	obere Konfidenzgrenze $[m^3/s]$
$\overline{\mathrm{HQ}_2}$	2899	3066	3233
HQ_{10}	3703	3904	4105
HQ_{30}	4060	4314	4567
HQ_{100}	4341	4688	5035
HQ_{300}	4520	4978	5435

In Abbildung 11 ist die Veränderung des mit dem Modell "mujump
1968" berechneten HQ_{100} zwischen 1891 und 2015 dargestellt.

 $^{^{10}{\}rm Siehe}~{\underline{\rm Leitfaden}}~{\rm Kapitel}~2.2.3$

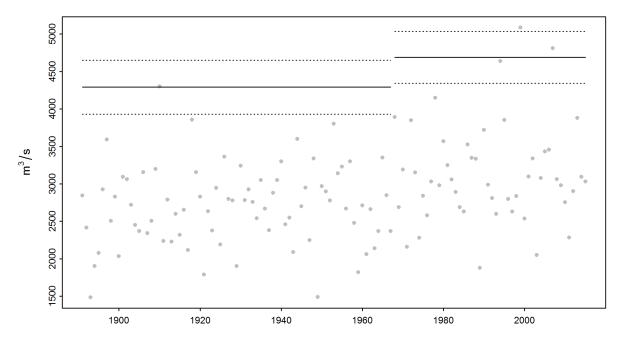


Abbildung 11: Veränderung der mit der Modellvariante "mujump1968" berechneten HQ_{100} (durchgezogene Linien) und des 95%-Konfidenzintervalls (Deltamethode; gestrichelte Linien) über die Jahre 1891-2015

2.2 Peaks Over Threshold Ansatz (POT)

Beim Peaks Over Threshold Ansatz (POT) gelten Werte als Extremereignisse, wenn sie einen hohen Schwellenwert u überschreiten.

Zur Berechnung des POT-Ansatzes werden die Tagesmaxima ab 1995 verwendet. Vor der Bearbeitung müssen diese von Clustern bereinigt werden. Für Rhein - Basel wird der Zeitabstand L zwischen zwei unabhängigen Ereignissen auf den Mindestwert von 15 Tagen festgelegt.

Folgende Modellvarianten des POT-Ansatzes wurden analysiert:

Auswertungs- periode	Beschreibung	ausgewählte Modellvariante	Kapitel
1995 - 2015	Auswertungsperiode POT	stat	Kapitel 2.2.1.a

Für die Auswertungsperiode POT zeigt sich kein signifikanter Unterschied zwischen der stationären und den nicht stationären Modellvarianten. 11

2.2.1 Auswertungsperiode POT: 1995-2015

Im vorliegenden Fall wurde als Schwellenwert u 2522 m $^3/s$ gewählt (siehe Anhang A). Abbildung 12 zeigt die effektiv verwendeten Extremereignisse.

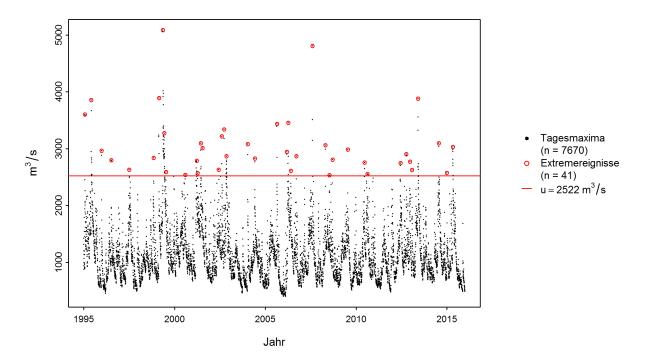


Abbildung 12: Auswahl der für den POT-Ansatz verwendeten Extremereignisse

2.2.1.a Stationäre Modellvariante

Verfahren	Modellvariante	Auswertungsperiode	Modelleingangsdaten	Bemerkung
POT	stat	1995-2015	Tagesmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Schwellenwert	Anzahl Werte	Ereignisrate	Skalenparameter	Formparameter
u	n	$\hat{\lambda}$	$\hat{\sigma}$	$\hat{\kappa}$
$2522 \text{ m}^3/\text{s}$	41	1.95	536.36	0.0228

Die Güte der Modellvariante "stat" über die Auswertungsperiode POT wird grafisch anhand der in Abbildung 13 dargestellten Diagnostikplots beurteilt.

 $^{^{11}\}mathrm{Als}$ Zeitpunkt \mathbf{t}_0 für das Modell "sigjump" wird das Jahr 2005 gewählt.

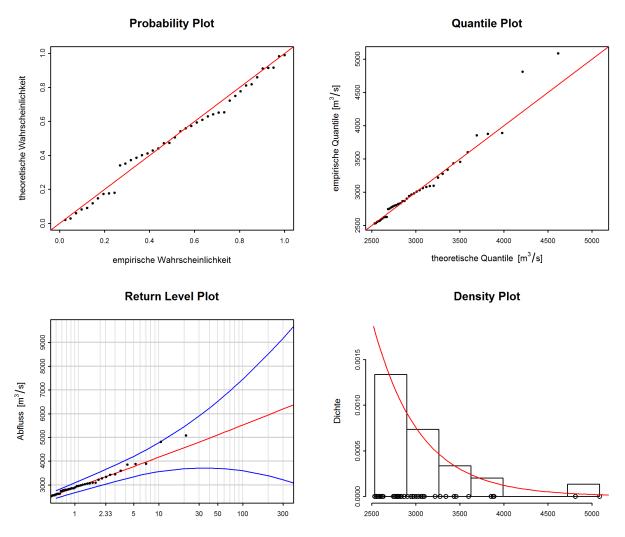


Abbildung 13: Diagnostikplots der Modellvariante "stat" des POT-Ansatzes (1995-2015)

Bewertung Diagnostikplots (Abbildung 13):

Kriterien	${f Bewertung}^{12}$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut	-
Anpassung oberer Bereich	schlecht	oberste Werte unterschätzt; >HQ20 unbekannt
Konfidenzintervall	gross	für grosse Wiederkehrperioden sehr gross

 $^{^{12}{\}rm Siehe}$
 <u>Leitfaden</u> Kapitel 2.2.3

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären POT-Ansatz über die Auswertungsperiode POT 1995-2015 (inkl. 95% - Konfidenzintervall berechnet über die Deltamethode):

$\overline{\mathrm{HQ_{T}}}$	untere Konfidenzgrenze [m ³ /s]	Abfluss [m ³ /s]	obere Konfidenzgrenze [m ³ /s]
$\overline{\mathrm{HQ}_2}$	2973	3264	3555
HQ_{10}	3560	4171	4782
HQ_{30}	3714	4809	5904
HQ_{100}	3597	5528	7458
HQ_{300}	3223	6200	9178

3 Vergleich der verschiedenen Resultate

Abbildung 14 zeigt die HQ_T der stationären sowie jener nicht stationären Modellvarianten, welche bei beiden parametrischen Verfahren jeweils am besten an die Daten angepasst waren. Sowohl die Werte wie auch die Grösse der Konfidenzintervalle, welche ein Mass für die Unsicherheit sind, variieren stark. Generell werden diese Unterschiede grösser, je grösser die Wiederkehrperiode T und je kleiner die zugrunde liegende Datenmenge ist.

3.1 Beurteilung der unterschiedlichen Auswertungsperioden

Nur mit dem BLOCK-Ansatz, der auf der Untersuchung von Monatsmaxima basiert, ist eine Analyse der Auswertungsperiode 1870 - 2015 möglich. Für die Darstellung des Einflusses der Messperiode wurden die Resultate des BLOCK-Ansatzes für die verschiedenen Auswertungsperioden verglichen:

Perioden	HQ_{T}	Konfidenzintervall
Vergleichsperiode /	deutlich höhere Werte in	deutlich grösser in
Gesamte Auswertungperiode	Vergleichsperiode	Vergleichsperiode
Periode ab Bruchpunkt / Gesamte	geringere Werte in Periode ab	kleiner in Periode ab
Auswertungsperiode	Bruchpunkt	Bruchpunkt
Periode ab Bruchpunkt / Vergleichs-	deutlich kleinere Werte in	deutlich kleiner in Periode ab
periode	Periode ab Bruchpunkt	Bruchpunkt

Nach 1891 wurden deutlich weniger grosse Jahreshochwasser beobachtet. Dies führt zu kleineren HQ_T in der Periode ab Bruchpunkt. Innerhalb der Vergleichsperiode ab 1995 wurden wieder vermehrt grössere Jahresmaxima registriert, wodurch die HQ_T wieder grösser sind. Aufgrund der geringeren Datenmenge ist das Konfidenzintervall bei der Vergleichsperiode viel grösser als in der gesamten Auswertungsperiode oder der Periode ab Bruchpunkt.

3.2 Allgemeiner Vergleich der verschiedenen Modellansätze

In Abbildung 14 und der zugehörigen Tabelle sind die Resultate der verschiedenen Modellansätze zusammengefasst und zeigen folgende Sachverhalte auf:

Differenzen der Resultate der berechneten HQ_T der beiden Ansätze:

Die HQ_T des POT-Ansatzes liegen höher als bei sämtlichen Modellvarianten des BLOCK-Ansatzes.

Differenzen der berechneten Konfidenzintervalle der beiden Ansätze:

Allgemein nehmen die Unsicherheiten und somit die Konfidenzintervalle zu, je grösser die Wiederkehrperiode T ist. Die Konfidenzintervalle des POT-Ansatzes sind dabei leicht grösser.

Vergleich von stationären und nicht stationären Varianten:

Beim BLOCK-Ansatz der gesamten Auswertungsperiode kann mit einer nicht stationären Variante die Modellgüte zu einem geringen Ausmass verbessert werden, da die Zunahme grosser Hochwasser in den letzten Jahren in das Modell miteinbezogen wurde. Die berechneten Wiederkehrwerte für das Jahr 2015 sind in der Folge grösser als mit den stationären Modellvarianten. Beim BLOCK-Ansatz der Periode ab Bruchpunkt kann mit einer nicht stationären Variante die Modellgüte nicht oder nur ganz leicht verbessert werden, obwohl auch da die Zunahme grosser Hochwasser in den letzten Jahren miteinbezogen wurde: Trotz besserer Anpassung im unteren Bereich werden die höchsten Werte weniger gut getroffen. Eine Aussage über die zukünftige Entwicklung ist nicht möglich, da den Veränderungen keine eindeutigen Ursachen zugewiesen werden können.

Für die Beantwortung konkreter Fragestellungen bilden die Resultate dieser statistischen Auswertungen nur eine von verschiedenen Grundlagen. Kenntnisse über die hydrologischen Prozesse im Einzugsgebiet, Überlegungen zu Worst-Case-Szenarien für Niederschlag und Abfluss etc. sind unerlässlich, um das Hochwasserrisiko abzuschätzen. Die Abteilung Hydrologie des BAFUs befürwortet eine "hydrologisch-argumentative Vorgehensweise" wie sie Merz und Blöschl (2008 zitiert in DWA 2015:52) vorschlagen.

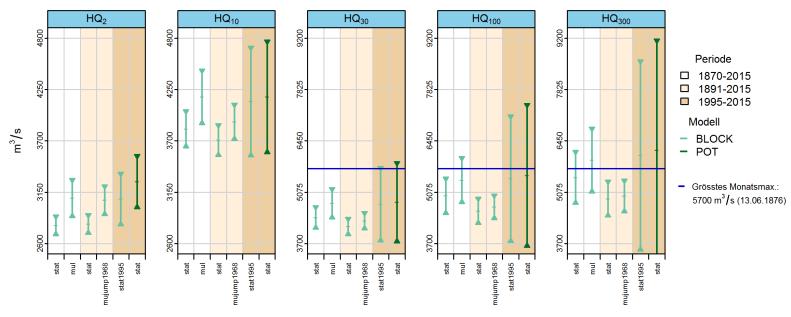


Abbildung 14: HQ_T [m³/s] inkl. 95%-Konfidenzintervalle, berechnet mit den stationären sowie den jeweils bestangepassten Modellvarianten des BLOCKund POT-Ansatzes für das Jahr 2015

Auswertungsperiode	Verfahren	Anpassung			Bemerkung
1870 - 2015	BLOCK stat	gut	gut-	schlecht	die obersten sechs Werte unterschätzt
			mittel		
	BLOCK mul	gut	gut-	mittel	die obersten zwei Werte unterschätzt
			mittel		die meisten Werte liegen näher an Einheitsdiagonale
1995 - 2015	BLOCK stat	gut	gut-	schlecht	oberste Werte unterschätzt; >HQ20 unbekannt
			mittel		
1891 - 2015	BLOCK stat	gut	gut	mittel-	die obersten drei Werte unterschätzt
				schlecht	
	BLOCK mujump1968	gut	gut	schlecht	die obersten vier Werte unterschätzt
					oberste Werte liegen weiter weg von Einheitsdiagonale
1995 - 2015	POT stat	gut	gut	schlecht	oberste Werte unterschätzt; >HQ20 unbekannt

4 Literatur

BAFU (2015): Leitfaden zu den Stationsberichten der Hochwasserstatistik. BAFU, Bern.

Baumgartner, E., Boldi, M.-O., Kan, C., Schick, S. (2013): Hochwasserstatistik am BAFU - Diskussion eines neuen Methodensets. Wasser Energie Luft, Heft 2/2013. Baden.

BWG (Hrsg.) (2003a): Wörterbuch Hochwasserschutz. Haupt Verlag, Bern.

BWG (Hrsg.) (2003b): Hochwasserabschätzung in schweizerischen Einzugsgebieten. Praxishilfe. Berichte des BWG, Serie Wasser Nr. 4, Bern.

Coles, S. (2001): An Introduction to Statistical Modeling of Extreme Values. Springer. London.

DWA (Hrsg.) (2012): Merkblatt DWA-M 552. Ermittlung von Hochwasserwahrscheinlichkeiten. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. Hennef.

Anhang

A Bestimmung des Schwellenwerts zur Abgrenzung von Extremwerten

Der Schwellenwert u zur Abgrenzung der Extremwerte des POT-Ansatzes für die Auswertungsperiode 1995 - 2015 (siehe Kapitel 2.2.1) wird anhand des "mean residual life plots" auf 2522 m³/s festgelegt (siehe Abbildung 15).

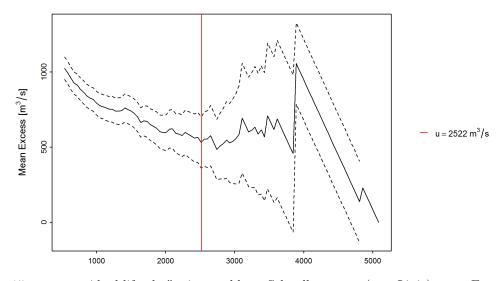


Abbildung 15: "mean residual life plot" mit gewähltem Schwellenwert u (rote Linie) mean Excess (schwarze Linie), 95%-Konfidenzintervall (gestrichelte Linien)

B Glossar

Auswertungsperiode	Begrenzter Zeitraum, aus welchem eine Stichprobe der Hochwasserabflüsse stammt, die als repräsentativ für die Grundgesamtheit angenommen wird. Es wird davon ausgegangen, dass die Eigenschaften der Grundgesamtheit mit dieser Stichprobe annähernd abgebildet werden.			
Devianzstatistik	Mit der Devianzstatistik kann die Anpassungsgüte eines Modells für einen gegebenen Datensatz untersucht werden.			
Deltamethode	Das BAFU nutzt die Deltamethode zur Berechnung von Konfidenzintervallen in den Return Level Plots. Die Methode basiert auf einer Taylor-Entwicklung der Funktion der $\mathrm{HQ_T}$ und einer asymptotischen Normalverteilung (für technische Details siehe Coles 2001, S. 33).			
Güte auch Anpassungsgüte oder Anpassung	Mass für die Abweichung eines statistischen Modells (theoretische Werte) und einer Menge von Beobachtungen bzw. Messungen (empirische Daten).			
HQ_{T}	Der mittels Verteilungsfunktion für eine vorgegebene Jährlichkeit T bestimmte Hochwasserabfluss. H Q_T ist ein Schätzwert, der über oder unter dem wahren Wert der Hochwasserabflüsse mit statistisch gesehen T-jährlicher Wiederkehrperiode liegen kann. H Q_T wird auch als Wiederkehrwert bezeichnet. Die mit den parametrischen Verfahren berechneten H Q_T gelten für eine ganze Periode (stationärer Fall) bzw. das aktuelle Berichtsjahr (nicht-stationärer Fall).			
Konfidenzintervall auch Vertrauensintervall	Konfidenzintervalle beschreiben die Unsicherheit des Outputs eines statistischen Modells. Sie berücksichtigen dabei den Fehler des Modells selbst, nicht aber weitere Unsicherheiten (z.B. Messfehler).			
Maximum-Likelihood- Methode	Bezeichnung für ein Verfahren, das die Parameter einer Verteilungsfunktion aus den Informationen einer Stichprobe schätzt, indem der Maximum-Likelihood-Wert der Funktion maximiert wird.			
Parametrische Verfahren	Ein wichtiges Ziel der Statistik ist es, mittels der Daten einer Stichprobe Aussagen über eine unbekannte Grundgesamtheit herzuleiten. Dafür eignen sich u. a. parametrische Verfahren, bei welchen angenommen wird, dass die Grundgesamtheit eine vorgegebene Wahrscheinlichkeitsverteilung besitzt, welche durch einen oder mehrere Parameter eindeutig bestimmt ist. Die beiden betrachteten Verfahren stützen sich auf die Allgemeine Extremwertverteilung (BLOCK), bzw. auf die Allgemeine Pareto-Verteilung (POT), weil diese Verteilungen die Natur der Daten (Blockmaxima, bzw. Daten ab einem gewissen Schwellwert) am besten reflektieren (siehe Coles 2001).			
Block-Maximum-Ansatz (BLOCK)	Der Block Maximum Ansatz (BLOCK) definiert den höchsten Wert innerhalb eines Zeitintervalls (Block, im vorliegenden Fall ein Jahr) als Extremwert (siehe <u>Leitfaden</u> Kapitel 2.1.1 oder Coles 2001, Kapitel 3.1).			
Peaks Over Threshold (POT)	Beim Peaks-Over-Threshold-Ansatz (POT) gelten Werte als Extremereignisse, wenn sie einen gewissen Schwellenwert u (in m³/s bzw. l/s) überschreiten. Die verwendeten Daten werden vorgängig von Clustern befreit (siehe <u>Leitfaden</u> Kapitel 2.1.2 oder Coles 2001, Kapitel 4.2).			
Probability Plot (P-P-Plot)	Exploratives, grafisches Werkzeug, in dem die Verteilungsfunktionen zweier statistischer Variablen gegeneinander aufgetragen werden, um ihre Verteilungen zu vergleichen. Hier: aufsummierte empirische Häufigkeiten vs. die theoretische, kumulierte Verteilungsfunktion. Je besser die Daten auf der Einheitsdiagonale liegen, desto mehr kann davon ausgegangen werden, dass die Modellannahmen korrekt sind. (Enthält die gleichen Informationen wie der Q-Q-Plot, dargestellt auf einer unterschiedlichen Skala.)			

Quantile Plot (Q-Q-Plot)	Exploratives, grafisches Werkzeug, in dem die Quantile zweier statistischer Variablen gegeneinander aufgetragen werden, um ihre Verteilung zu vergleichen. Hier: beobachtete Abflusswerte vs. die mit Hilfe eines Modells berechneten Abflussdaten. Stimmen die empirischen und theoretischen Quantile annähernd überein, liegen die Werte in der Grafik nahe der Diagonalen. (Enthält die gleichen Informationen wie der P-P-Plot, dargestellt auf einer unterschiedlichen Skala.) Hinweis: Die theoretischen Quantile werden aus der Umkehrfunktion der Verteilungsfunktion berechnet. Für den direkten, optischen Vergleich mit dem entsprechenden Probability Plot sind die Achsen des Quantile Plots daher vertauscht.				
Stationarität	Beobachtet man bei einer Messstation, dass sich das Abflussverhalten über die Beobachtungsperiode nicht wesentlich ändert, so empfiehlt es sich, ein stationäres Modell zu verwenden. Im stationären Fall wird angenommen, dass alle Parameter der Verteilungsfunktion über den gesamten Untersuchungszeitraum konstant sind.				
Nicht-Stationarität	Nicht-stationäre Modelle werden verwendet, um ein Abflussverhalten zu beschreiben, welches zeitlichen Änderungen unterliegt. Solche Änderungen können durch einen Wechsel der Messgeräte und Messmethoden, durch Stationsverlagerung, durch Gerinneveränderungen und durch anthropogene Einflüsse verursacht werden. Bei anthropogenen Einflüssen können die Veränderungen meist nicht einem einzelnen Eingriff zugeordnet werden, sondern sie bestehen aus Überlagerungen von verschiedenen, wasserwirtschaftlichen Massnahmen. Werden zeitliche Veränderungen der Daten vermutet, werden die Parameter der entsprechenden Verteilungsfunktion zeitlich abhängig modelliert. Dies führt dazu, dass sich auch die berechneten HQ_T über die Zeit verändern.				
Verteilungsfunktion	Beschreibt die Grundgesamtheit der Hochwasserabflüsse aus einem Einzugsgebiet. Die Verteilungsfunktion gibt die Wahrscheinlichkeiten an, dass ein Hochwasserabfluss HQ in einem Jahr erreicht oder unterschritten wird.				
Empirische Häufigkeitsverteilung	Kann aus der gewählten Stichprobe bestimmt werden.				
Theoretische Wahrscheinlichkeits- verteilung	Schliesst von der gewählten Stichprobe auf die Grundgesamtheit. Es gibt viele verschiedene theoretische Verteilungsfunktionen, welche die Voraussetzungen für die Anwendung in der Hochwasserstatistik erfüllen, aber keine, die für alle Stichproben die besten Resultate gewährleistet.				
Verteilungsparameter					
κ Formparameter (kappa)	Der Formparameter κ steht in direktem Zusammenhang mit der sogenannten "Heaviness of Tail"der Verteilung. Als Tail wird der Bereich mit den Ausreissern nach oben bezeichnet. Ist κ gross, so werden viele solche Ausreisser angenommen. Bei negativen Werten für κ hingegen wird angenommen, dass für die Extremwerte eine obere Schranke existiert.				
λ Ereignisrate (lambda)	Beim POT-Ansatz entspricht die Ereignisrate λ der mittleren Anzahl Schwellenwertüberschreitungen während des Zeitintervalls von einem Jahr.				
μ Lageparameter (mu)	Beschreibt die mittlere Lage der Stichprobenelemente (hier: Abflussmessungen) in Bezug auf die Messskala (hier: $\rm m^3/s$ bzw. $\rm l/s$).				