Département fédéral de l'environnement, des transports, de l'énergie et de la communication DETEC

Office fédéral de l'environnement OFEV

STATISTIQUE DES CRUES

RAPPORT DE STATION

Broye - Payerne, Caserne d'aviation

Explications additionnelles : <u>guide de lecture</u> Contact : hydroanalysen@bafu.admin.ch

Table des matières

1	Base de données	2
2	Résultats des méthodes paramétriques 2.1 Méthode de Block Maximum (BLOCK) 2.1.1 Période d'étude totale : 1925-2015 2.1.1.a Variante stationnaire du modèle 2.1.1.b Variante non stationnaire du modèle 2.1.2 Période de comparaison : 1974-2015 2.1.2.a Variante stationnaire du modèle 2.2 Méthode de Peaks Over Threshold (POT) 2.2.1 Période d'étude POT : 1974-2015 2.2.1.a Variante stationnaire du modèle 2.2.1.b Variante non stationnaire du modèle	7 9 11 12 13
	3.1 Evaluation des différentes périodes d'étude	
A 1	A Détermination de la valeur seuil pour délimiter les valeurs extrêmes	

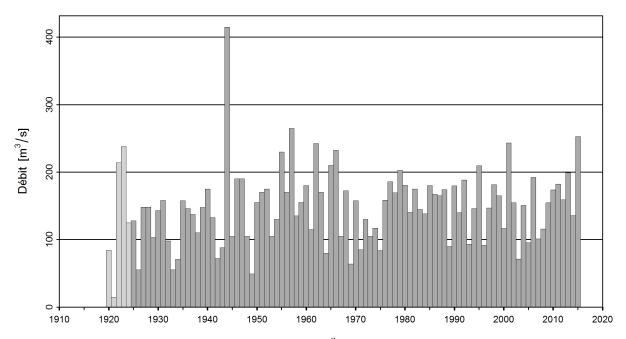
1 Base de données

Les données sur les débits ci-après sont disponibles et servent de base à l'évaluation statistique des extrêmes :

Données disponibles	de	à
Maxima mensuels sous forme numérique	01.01.1920	31.12.2015
Maxima journaliers sous forme numérique	01.01.1974	31.12.2015

Un limnigraphe a été mis en service le le 31. décembre 1924. Depuis le début des relevés et jusqu'au 31 juillet 1920, les mesures ont été effectuées à la station 0/00236 Broye-Payerne; depuis le 1er août 1920, à l'emplacement actuel.

Les évaluations utilisent soit les maxima mensuels lorsqu'ils ont été mesurés pour des années entières à l'aide du limnigraphe ou les maxima journaliers sous forme numérique (cf. chapitre 2).


Le débit le plus élevé a été observé comme suit :

Pointe de débit maximale	Date	Débit
Maximum journalier le plus élevé	08.12.1944	$415 \text{ m}^3/\text{s}$
Maximum mensuel le plus élevé	02.05.2015	$253 \text{ m}^{3}/\text{s}$

Les données sur le débit présentent les caractéristiques ci-après :

Mode d'écoulement	Description
Régime d'écoulement	Pluvial inférieur : Débits élevés en hiver, faibles en été
Amplitude de la saisonnalité	Perceptible dans les maxima mensuels et journaliers. (figure 3 et figure 4)
Influences	Influence minime d'une STEP, mais sans impact sur les crues annuelles. Par ailleurs, aucun facteur d'influence susceptible d'avoir un impact sur le mode d'écoulement n'est connu dans la région.

Les maxima annuels varient entre 50 et 250 m³/s environ, les valeurs mesurées affichant une dispersion grande dans cette fourchette. La plupart des valeurs se situent entre 100 et 200 m³/s, une valeur élevée, supérieure à 400 m³/s, a toutefois été observée une fois au cours de la période d'étude. L'analyse des points de rupture révèle un point de rupture non significatif aux environs de 1944 (intervalle de confiance pas calculable). Cette année-là est la première après le débit le plus élevé. Durant la brève période qui précède, on observe donc une fréquence relative accrue par rapport à la période qui suit en ce qui concerne les grandes crues. Le point de rupture n'a pas d'explication hydrologique, car il est impossible de le mettre sur le compte d'une éventuelle modification du mode d'écoulement. Nous renonçons donc à définir une période d'étude à partir de ce point.

 $\label{eq:figure 1-Série} \mbox{Eigure 1-Série chronologique des maxima annuels } [m^3/s] \; (1920 - 2015, \; Gris \; clair : maxima non pris en compte dans la statistique, gris foncé : maxima annuels pris en compte)$

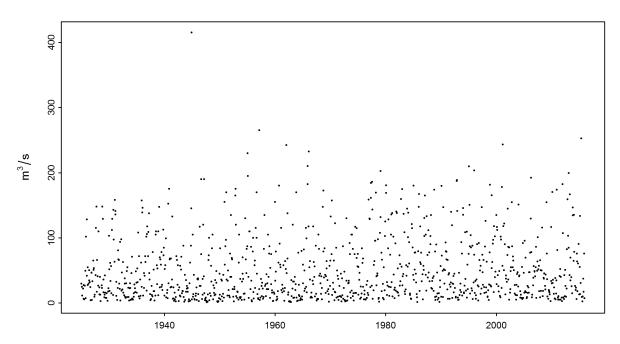


FIGURE 2 – Série chronologique des maxima mensuels $[\mathrm{m}^3/\mathrm{s}]~(01.01.1925$ - 31.12.2015)

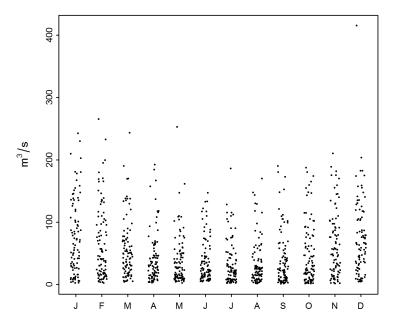


Figure 3 – Variations saisonnières des maxima mensuels $[\mathrm{m}^3/\mathrm{s}]~(01.01.1925$ - 31.12.2015)

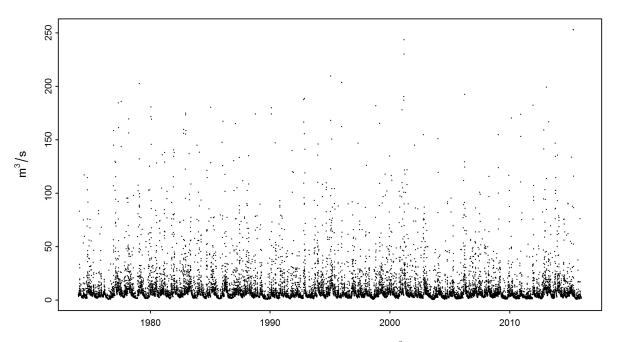


Figure 4 – Série chronologique des maxima journaliers $[\mathrm{m}^3/\mathrm{s}]$ (01.01.1974 - 31.12.2015)

Conclusion concernant les variantes du modèle

Changements	Impact	Conclusions
Aucune n'est connue	-	Probablement stationnaire

Analyse des points de rupture

Année	Point de rupture significatif	Conclusions
1943 / 1944	non	Pas de subdivision de la période d'étude, car
		la documentation concernant la station et le
		bassin versant ne la justifient pas. L'année
		1944 est définie comme t_0 (cf. chapitre 2).

2 Résultats des méthodes paramétriques

La probabilité des crues HQ_T est estimée à l'aide de deux méthodes paramétriques (BLOCK et POT). Ces deux méthodes se distinguent par leur manière d'identifier les valeurs extrêmes. Elles se fondent sur les paramètres et les données d'entrée ci-après :

Méthode paramétrique	Pa	aramètre	Données utilisées
Block Maximum (BLOCK)	μ	Paramètre de position	Maxima annuels
	σ	Paramètre d'échelle	
	κ	Paramètre de forme	
Peaks Over Threshold (POT)	λ	Taux d'occurrences	Maxima journaliers
	σ	Paramètre d'échelle ¹	
	κ	Paramètre de forme	

Dans les deux méthodes paramétriques, on calcule toujours le cas stationnaire. On suppose à cet effet que tous les paramètres de la fonction de répartition demeurent constants sur toute la période étudiée. Si l'historique de la station donne toutefois à penser qu'un changement est intervenu au fil du temps, les paramètres de la fonction de répartition correspondante peuvent être modélisés en fonction du temps. Les variantes de modèle utilisées sont présentées dans les tableaux 1 et 2 ci-après :

Table 1 – Variantes de la méthode BLOCK. μ Paramètre de position (mu), σ Paramètre d'échelle (sigma), κ Paramètre de forme (kappa)

Variante	Variantes de la méthode BLOCK					
Nom	Description	Paramètre (t : année)	Nombre de paramètres			
stat	Variante stationnaire	μ, σ, κ	3			
mul	Tendance linéaire de μ	$\mu = a_1 + a_2 * t, \sigma, \kappa$	4			
muq	Tendance quadratique de μ	$\mu = a_1 + a_2 * t + a_3 * t^2, \sigma, \kappa$	5			
sigl	Tendance linéaire de σ	$\mu, \sigma = b_1 + b_2 * t, \kappa$	4			
musigl	Tendance linéaire de μ et σ	$\mu = a_1 + a_2 * t, \sigma = b_1 + b_2 * t, \kappa$	5			
mujump	Évolution non continue de	$\mu = a_1 + a_2 * i, \sigma, \kappa, i = 0$ pour	4			
	μ au moment t_0	$t < t_0, i = 1 \text{ quand } t \ge t_0$				

TABLE 2 – Variantes de la méthode POT. σ Paramètre d'échelle (sigma), κ Paramètre de forme (kappa)

Variantes de la méthode POT					
Nom	Description	Paramètre (t : année)	Nombre de paramètres		
stat	Variante stationnaire	σ, κ	2		
sigl	Tendance linéaire de σ	$\sigma = b_1 + b_2 * t, \kappa$	3		
$\operatorname{sigjump}$	Évolution non continue de σ	$\sigma = b_1 + b_2 * i, \kappa,$	3		
	au moment t_0	$i = 0$ pour $t < t_0$, $i = 1$ quand			
		$t \ge t_0$			

La qualité des variantes est toujours évaluée à l'aide d'un Probability Plot et d'un Quantile Plot (cf. p. ex. figure 5 ci-dessus et <u>Guide de lecture</u> point 2.2.3). Plus les données sont proches de la première bissectrice, plus il est possible de supposer que les hypothèses du modèle sont correctes. Un ordinogramme est utilisé pour décider quel modèle non stationnaire sera utilisé par la suite (cf. figure 5 du <u>Guide de lecture</u> point 2.1.3). Les variantes présentées ci-après sont celles qui fournissent les meilleurs résultats.

^{1.} La valeur numérique du paramètre d'échelle σ de la méthode POT n'est pas identique à celle du paramètre d'échelle σ de la méthode BLOCK.

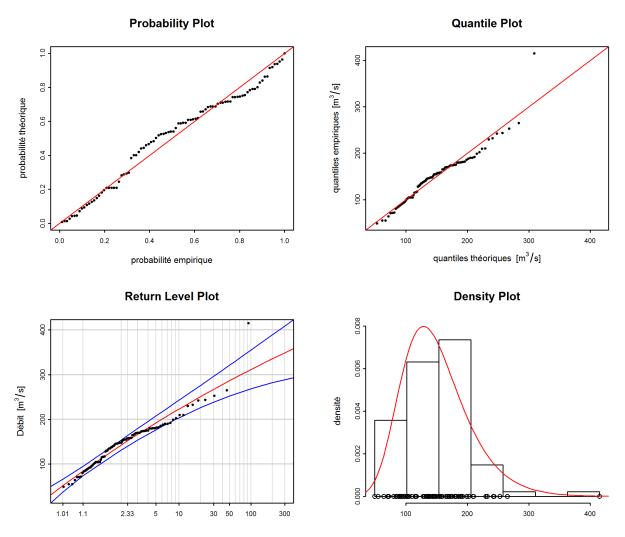
2.1 Méthode de Block Maximum (BLOCK)

Dans la méthode de Block Maximum, la valeur maximale enregistrée au cours d'un intervalle de temps (ou «bloc», qui équivaut ici à une année) correspond à la valeur extrême.

Le présent rapport décrit les variantes suivantes de la méthode BLOCK :

Période d'étude	Description	Variante sélectionnée	Point
1925 - 2015	période d'étude totale	stat	point 2.1.1.a
		mujump	point 2.1.1.b
1974 - 2015	période de comparaison	stat	point 2.1.2.a

2.1.1 Période d'étude totale : 1925-2015


2.1.1.a Variante stationnaire du modèle

Méthode	Variante	Période d'étude	Données d'entrée	Remarque
BLOCK	stat	1925-2015	Maxima annuels	-

Nombre de valeurs utilisées et estimation des valeurs paramétriques :

Nombre	Paramètre de position $\hat{\mu}$	Paramètre d'échelle $\hat{\sigma}$	Paramètre de forme $\hat{\kappa}$
de valeurs n			
91	125.88	46.16	-0.06

La qualité de la variante «stat» pour la période d'étude totale est évaluée sur une base graphique à l'aide des graphiques diagnostiques de la figure 5.

 ${\tt Figure}~5-{\tt Graphiques}~{\tt diagnostiques}~{\tt de}~{\tt la}~{\tt variante}~{\tt «stat} {\tt w}~{\tt de}~{\tt la}~{\tt m\'ethode}~{\tt BLOCK} (1925-2015)$

Evaluation des graphiques diagnostiques (figure 5):

Critères	Evaluation 2	Remarques
Adéquation dans le domaine inférieur	bonne	-
Adéquation dans le domaine moyen	moyenne	plusieurs des valeurs sont plutôt surestimées
Adéquation dans le domaine supérieur	médiocre	quelques valeurs sont légèrement surestimées; la valeur la plus éle- vée est très nettement sous-estimée
Intervalle de confiance	faible	-

^{2.} cf. guide de lecture point 2.2.3

Le tableau ci-après présente, les débits, de l'année la plus récente, déterminés pour différentes périodes de retour à l'aide de la variante stationnaire de la méthode BLOCK sur la période d'étude totale 1925-2015 (y. c. l'intervalle de confiance à 95 % établi selon la méthode delta) :

$\mathbf{HQ_{T}}$	Limite de confiance	Débit $[m^3/s]$	Limite de confiance
	$inférieure [m^3/s]$		$ m sup {\'e}rieure~[m^3/s]$
$\overline{\mathrm{HQ}_{2}}$ $\overline{\mathrm{HQ}_{10}}$ $\overline{\mathrm{HQ}_{30}}$	131	143	154
HQ_{10}	203	223	243
HQ_{30}	238	267	296
HQ_{100}	268	311	355
HQ_{300}	289	349	409

2.1.1.b Variante non stationnaire du modèle

La comparaison des différentes variantes de la méthode BLOCK montre que les variantes «mul» et «mujump» s'écartent de manière significative de la variante stationnaire («stat»). ³ Sur la base de la procédure de comparaison de différentes variantes non stationnaires, telle qu'elle est décrite dans l'ordinogramme, c'est le modèle «mujump» qui constitue la meilleure option. Les différences entre les variantes sont minimes. Le présent rapport s'en tient dès lors aux résultats de la variante «mujump» (cf. figure 5 du guide de lecture).

Méthode	Variante	Période d'étude	Données d'entrée	Remarque
BLOCK	mujump1944	1925-2015	Maxima annuels	-

Nombre de valeurs utilisées et estimation des valeurs paramétriques :

Nombre de valeurs n	Paramètre de position $\hat{\mu}^4$		Paramètre d'échelle $\hat{\sigma}$	Paramètre de forme $\hat{\kappa}$
	$\mathbf{a_1}$	$\mathbf{a_2}$		
91	104.2	28.62	44.82	-0.0642

La qualité de la variante «mujump1944» pour la période d'étude totale est évaluée sur une base graphique à l'aide des graphiques diagnostiques de la figure 6.

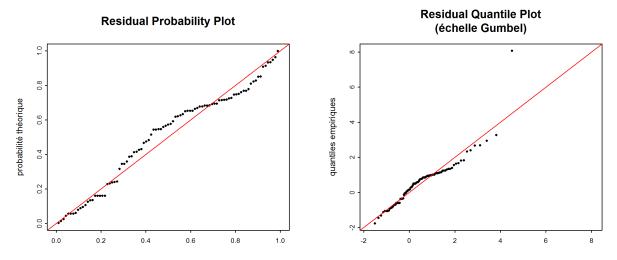


FIGURE 6 – Graphiques diagnostiques de la variante «mujump1944» de la méthode BLOCK (1925-2015)

^{3.} Sur la base de l'analyse des points de rupture, l'année 1944 est choisie comme temps t_0 pour la variante «mujump» (cf. point 1).

^{4.} $\hat{\mu} = a_1 + a_2 *i$, i = 0 pour $t < t_0$, i = 1 quand $t \ge t_0$ (cf. tableau 1)

Évaluation des graphiques diagnostiques (Figure 6):

Critères	Evaluation 5	Remarques
Adéquation dans le domaine inférieur	bonne	-
Adéquation dans le domaine moyen	moyenne	plusieurs des valeurs sont plutôt surestimées
Adéquation dans le domaine supérieur	médiocre	quelques valeurs sont légèrement surestimées; la valeur la plus éle-
Comparaison avec la variante stationnaire	qualité identique	vée est très nettement sous-estimée les résultats des deux modèles sont très similaires

Le tableau ci-après présente les débits, de l'année la plus récente (2015), déterminés pour différentes périodes de retour à l'aide de la variante «mujump1944» de la méthode BLOCK sur la période d'étude totale 1925-2015 (y. c. l'intervalle de confiance à 95 % établi selon la méthode delta) :

HQ_{T}	Limite de confiance inférieure $[m^3/s]$	Débit $[m^3/s]$	Limite de confiance supérieure $[m^3/s]$
$\overline{\mathrm{HQ}_2}$	137	149	161
HQ_{10}	207	227	246
$\begin{array}{c} HQ_2 \\ HQ_{10} \\ HQ_{30} \end{array}$	242	269	297
HQ_{100}	271	311	352
HQ_{300}	292	347	402

La figure 7 illustre la modification entre 1925 et 2015 du débit HQ_{100} calculé à l'aide de la variante «mujump1944».

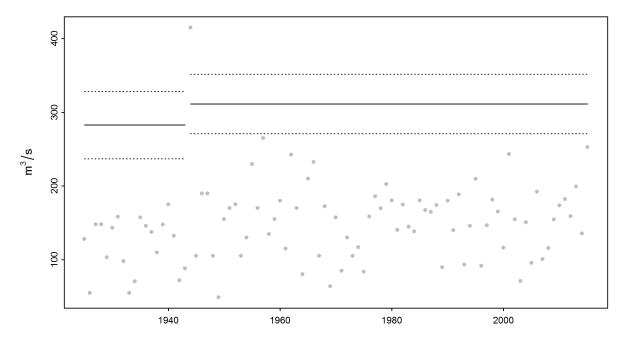


FIGURE 7 – Modification des HQ_{100} (calculés à l'aide de la variante «mujump1944») et de l'intervalle de confiance à 95 % (méthode delta; lignes en traitillé) durant la période 1925-2015

^{5.} Cf. guide de lecture point 2.2.3

2.1.2 Période de comparaison : 1974-2015

2.1.2.a Variante stationnaire du modèle

Méthode	Variante	Période d'étude	Données d'entrée	Remarque
BLOCK	stat	1974-2015	Maxima annuels	-

Nombre de valeurs utilisées et estimation des valeurs paramétriques :

Nombre	Paramètre de position $\hat{\mu}$	Paramètre d'échelle $\hat{\sigma}$	Paramètre de forme $\hat{\kappa}$
de valeurs n			
42	140.37	40.79	-0.2686

La qualité de la variante «stat» pour la période de comparaison est évaluée sur une base graphique à l'aide des graphiques diagnostiques de la figure 8.

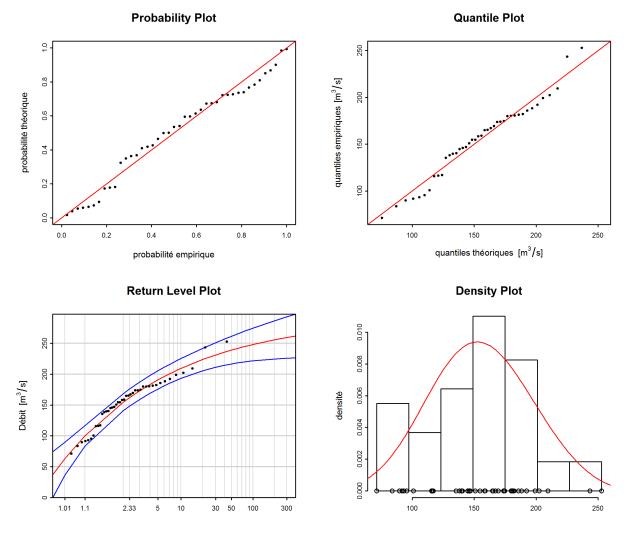


FIGURE 8 – Graphiques diagnostiques de la variante «stat» de la méthode BLOCK (1974-2015)

Evaluation des graphiques diagnostiques (figure 8):

Critères	Evaluation 6	Remarques
Adéquation dans le domaine inférieur	bonne	-
Adéquation dans le domaine moyen	bonne	-
Adéquation dans le domaine supérieur	bonne-moyenne	les deux valeurs les plus élevées sont légèrement sous-estimées
Intervalle de confiance	faible	-

Le tableau ci-après présente, les débits, de l'année la plus récente, déterminés pour différentes périodes de retour à l'aide de la variante stationnaire de la méthode BLOCK sur la période de comparaison 1974-2015 (y. c. l'intervalle de confiance à 95~% établi selon la méthode delta) :

HQ_{T}	Limite de confiance inférieure [m³/s]	${ m D\'ebit}[{ m m}^3/{ m s}]$	Limite de confiance supérieure [m³/s]
$\overline{\mathrm{HQ}_2}$	141	155	168
HQ_{10}	193	209	225
HQ_{30}	211	231	251
$\begin{array}{c} HQ_2 \\ HQ_{10} \\ HQ_{30} \\ HQ_{100} \end{array}$	222	248	275
HQ_{300}	226	259	293

2.2 Méthode de Peaks Over Threshold (POT)

La méthode «Peaks over Threshold» (POT) considère comme événements extrêmes ceux qui dépassent une valeur seuil u élevée.

Les calculs selon la méthode POT se fondent sur les maxima journaliers à partir de 1974. Auparavant, il importe toutefois de corriger ces données de l'effet cluster. Dans le cas de Broye - Payerne, Caserne d'aviation, l'intervalle de temps L entre deux événements indépendants est fixé à 11 jours au minimum.

L'analyse porte sur les variantes ci-après de la méthode POT :

Période d'étude	Description	Variante sélectionnée	Point
1974 - 2015	période d'étude POT	stat	point 2.2.1.a
		$\operatorname{sigjump}$	point 2.2.1.b

^{6.} cf. guide de lecture point 2.2.3

2.2.1 Période d' étude POT : 1974-2015

Dans ce cas, la valeur seuil u a été fixée à 105 m³/s (cf. annexe A). La figure 9 indique les événements extrêmes qui ont effectivement été utilisés.

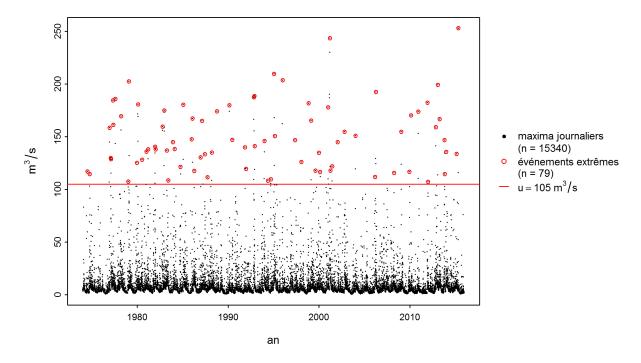
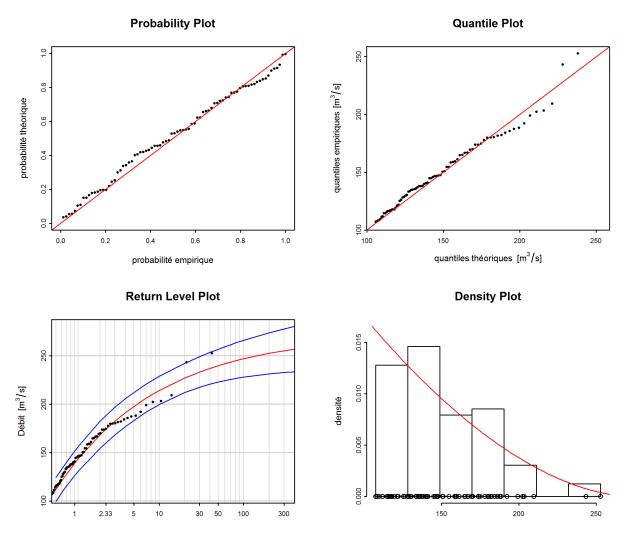


FIGURE 9 – Sélection des valeurs extrêmes utilisées dans la méthode POT


2.2.1.a Variante stationnaire du modèle

Méthode	Variante	Période d'étude	Données d'entrée	Remarque
POT	stat	1974-2015	Maxima journaliers	-

Nombre de valeurs utilisées et estimation des valeurs paramétriques :

\mathbf{Valeur}	${f Nombre}$	Taux	Paramètre	Paramètre
\mathbf{seuil}	${ m de\ Valeurs}$	${f d}$ 'occurences	d'échelle	${f de}$ forme
u	n	$\hat{\lambda}$	$\hat{\sigma}$	$\hat{\kappa}$
$105 \text{ m}^3/\text{s}$	79	1.88	60.4	-0.3611

La qualité de la variante «stat» pour la période d'étude POT est évaluée sur une base graphique à l'aide des graphiques diagnostiques de la figure 10.

 ${\tt Figure~10-Graphiques~diagnostiques~de~la~variante~«stat»~de~la~m\'ethode~POT~(1974-2015)}$

Evaluation des graphiques diagnostiques (Figure 10):

Critères	Evaluation 7	Remarques
Adéquation dans le domaine inférieur	bonne	-
Adéquation dans le domaine moyen	moyenne	quelques valeurs sont surestimées
Adéquation dans le domaine supérieur	moyenne-	quelques valeurs sont surestimées;
	médiocre	les deux valeurs les plus élevée sont
		sous-estimées
Intervalle de confiance	faible	

^{7.} cf. guide de lecture point 2.2.3

Le tableau ci-après présente, les débits, de l'année la plus récente, déterminés pour différentes périodes de retour à l'aide de la variante stationnaire de la méthode POT sur la période d'étude POT 1974-2015 (y. c. l'intervalle de confiance à 95 % établi selon la méthode delta) :

HQ_{T}	Limite de confiance inférieure $[\mathrm{m}^3/\mathrm{s}]$	${ m D\'ebit}[{ m m}^3/{ m s}]$	Limite de confiance supérieure [m³/s]
$\overline{\mathrm{HQ}_2}$	155	169	182
HQ_2 HQ_{10} HQ_{30}	200	214	229
HQ_{30}	218	233	249
HQ_{100}	228	247	266
HQ_{300}	233	255	278

2.2.1.b Variante non stationnaire du modèle

La comparaison des différentes variantes de la méthode POT montre que les variantes «sigl» und «sigjump» s'écartent de manière significative de la variante stationnaire «stat». ⁸C'est la variante «sigjump» qui s'avère la plus probante. Ses résultats sont reproduits ci-après (cf. figure 5 du guide de lecture).

Méthode	Variante	Période d'étude	Données d'entrée	Remarque
POT	sigjump1995	1974-2015	Maxima journaliers	-

Nombre de valeurs utilisées et estimation des valeurs paramétriques :

Valeur seuil	Nombre de Valeurs	Taux d'occurences	Paramètre	e d'échelle $\hat{\sigma}^{9}$	Paramètre de forme
u	n	$\hat{\lambda}$	b_1	b_2	$\hat{\kappa}$
$\frac{105 \text{ m}^3/\text{s}}{}$	79	1.88	60.28	30.37	-0.5868

La qualité de la variante «sigjump1995» pour la période d'étude POT est évaluée sur une base graphique à l'aide des graphiques diagnostiques de la figure 11.

FIGURE 11 – Graphiques diagnostiques de la variante «sigjump1995» de la méthode POT (1974-2015)

^{8.} Sur la base de l'analyse des points de rupture, l'année 1995 est choisie comme temps t_0 pour la variante «sigjump» (cf. point 1).

^{9.} $\hat{\sigma} = b_1 + b_2 *i, i = 0$ pour $t < t_0, i = 1$ quand $t \ge t_0$ (cf. tableau 1)

Evaluation des graphiques diagnostiques (Figure 11):

Critères	$\acute{\mathbf{E}}$ valuation 10	Remarques
Adéquation dans le domaine inférieur	bonne	-
Adéquation dans le domaine moyen	bonne	-
Adéquation dans le domaine supérieur	médiocre	les trois valeurs les plus élevées
		sont nettement sous-estimées
Comparaison avec la variante stationnaire	moins bonne	les valeurs les plus élevées sont plus
-		éloignées de la première bissectrice

Le tableau ci-après présente, les débits, de l'année la plus récente, déterminés pour différentes périodes de retour à l'aide de la variante nom stationnaire de la méthode POT sur la Période d' étude POT 1974-2015 (y. c. l'intervalle de confiance à 95 % établi selon la méthode delta) :

HQ_{T}	Limite de confiance inférieure $[m^3/s]$	Débit $[m^3/s]$	Limite de confiance supérieure [m³/s]
$\overline{\mathrm{HQ}_2}$	170	188	207
$\begin{array}{c} HQ_2 \\ HQ_{10} \\ HQ_{30} \end{array}$	217	232	247
HQ_{30}	232	245	258
HQ_{100}	239	252	266
HQ_{300}	241	256	270

La figure 12 illustre la modification entre 1925 et 2015 du débit HQ_{100} calculé à l'aide de la variante «sigjump1995».

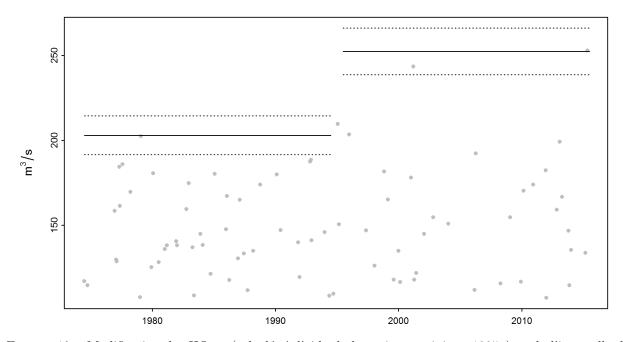


FIGURE 12 – Modification des HQ_{100} (calculés à l'aide de la variante «sigjump1995») et de l'intervalle de confiance à 95 % (méthode delta; lignes en traitillé) durant la période 1974-2015

^{10.} cf. guide de lecture point 2.2.3

3 Comparaison des résultats

La figure 13 présente les HQ_T obtenus à l'aide de la variante stationnaire et des variantes non stationnaires, qui s'avèrent les mieux adaptées aux données dans les deux méthodes paramétriques. Tant les valeurs que la taille de l'intervalle de confiance, qui est une mesure de l'incertitude, varient beaucoup. Ces écarts sont en général d'autant plus grands que la période de retour T est grande et le nombre des données de base petit.

3.1 Evaluation des différentes périodes d'étude

Seule la méthode BLOCK, qui se fonde sur l'étude des maxima mensuels, permet d'analyser la période d'étude 1925 - 2015. Les résultats de cette méthode ont été comparés pour les différentes périodes d'étude, afin d'illustrer l'influence de la période de mesure :

Périodes	$ m HQ_T$	Intervalle de confiance
Période de comparaison /	valeurs nettement plus petites	plus petit
Période d'étude totale	pour des périodes de retour	
	grandes	

La crue annuelle maximale est survenue avant 1974. Cette valeur est nettement supérieure au débit le plus élevé enregistré durant la période de comparaison. Voilà pourquoi les données indiquent que les débits HQT élevés ont atteint des valeurs supérieures durant la période d'étude totale à celles de la période de comparaison. En raison de la faible variance des valeurs, l'intervalle de confiance s'avère, malgré des données moins nombreuses, plus faible durant la période de comparaison que sur la période d'étude totale.

3.2 Comparaison globale des diverses variantes

La figure 13 et le tableau correspondant récapitulent les résultats des différentes variantes des méthodes paramétriques. Cette juxtaposition débouche sur les constats suivants :

Différences entre les résultats pour les HQ_T calculés à l'aide des deux méthodes

Dans le cas de la période de comparaison, les HQ_T de la méthode POT sont supérieurs à ceux de la méthode BLOCK pour des périodes de retour petites et à peu près équivalents pour les périodes de retour plus grandes. Pour la période d'étude totale, les HQ_T de la méthode POT sont supérieurs à ceux de la méthode BLOCK pour des périodes de retour petites et nettement plus petites pour les périodes de retour plus grandes.

Différences entre les intervalles de confiance calculés selon les deux méthodes:

En général, les incertitudes, et dès lors les intervalles de confiance, augmentent lorsque la période de retour T s'allonge. Les intervalles de confiance établis par la méthode POT sont toutefois légèrement plus petits que ceux de la méthode BLOCK.

Comparaison entre variantes stationnaires et variantes non stationnaires :

Dans le cas de la méthode BLOCK, l'application d'une variante non stationnaire n'améliore pas la qualité du modèle, puisque la variante «mujump» fournit des valeurs très proches de celles de la variante stationnaire. Dans la méthode POT, la variante stationnaire sous-estime au contraire davantage les valeurs les plus élevées, de sorte qu'elle n'améliore pas les résultats. Il est impossible de tirer des conclusions quant à l'évolution future, car rien ne permet d'identifier les causes exactes des modifications.

Les résultats de ces applications statistiques ne constituent que l'une des bases pour répondre à des questions concrètes. D'autres connaissances sur les spécificités hydrologiques du bassin versant, des réflexions sur le pire scénario en matière de précipitations et de débits, etc. sont en effet indispensables pour estimer le risque de crue. La division Hydrologie de l'OFEV préconise une manière de procéder «étayée par des arguments hydrologiques», telle qu'elle est décrite par Merz et Blöschl (2008, cités dans DWA 2012:52).

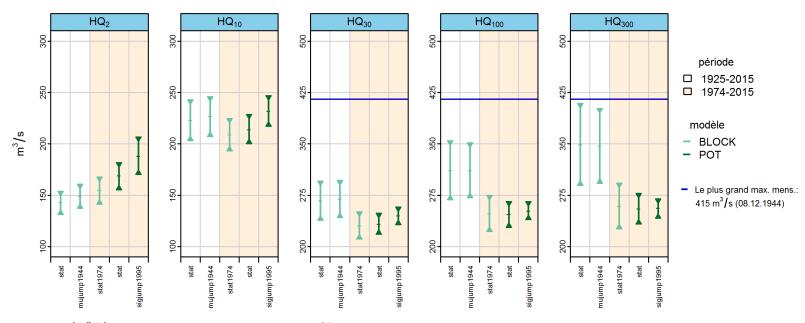


FIGURE 13 – $\mathrm{HQ_T}$ [m³/s] y c. un intervalle de confiance à 95 % calculé à l'aide du modèle stationnaire ainsi qu'au moyen de la meilleure variante de la méthode BLOCK et POT pour l'année 2015

Période d'étude	Méthode	Adéqua	tion		Remarque
1925 - 2015	BLOCK stat	bonne	moyenne	médiocre	quelques valeurs sont légèrement surestimées; la valeur la
					plus élevée est très nettement sous-estimée
	BLOCK mujump1944	bonne	moyenne	médiocre	quelques valeurs sont légèrement surestimées; la valeur la
					plus élevée est très nettement sous-estimée
					les résultats des deux modèles sont très similaires
1974 - 2015	BLOCK stat	bonne	bonne	bonne-	les deux valeurs les plus élevées sont légèrement sous-
				moyenne	estimées
1974 - 2015	POT stat	bonne	moyenne	moyenne-	quelques valeurs sont surestimées ; les deux valeurs les plus
				médiocre	élevée sont sous-estimées
	POT sigjump1995	bonne	bonne	médiocre	les trois valeurs les plus élevées sont nettement sous- estimées
					les valeurs les plus élevées sont plus éloignées de la pre- mière bissectrice

4 Bibliographie

Baumgartner, E., Boldi, M.-O., Kan, C., Schick, S. (2013): Hochwasserstatistik am BAFU - Diskussion eines neuen Methodensets. Wasser Energie Luft, Heft 2/2013. Baden.

Coles, S. (2001): An Introduction to Statistical Modeling of Extreme Values. Springer. London.

DWA (éd.) (2012): Merkblatt DWA-M 552. Ermittlung von Hochwasserwahrscheinlichkeiten. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. Hennef.

OFEG (éd.) (2003a): Dictionnaire de la protection contre les crues. Haupt Verlag, Bern.

OFEG (éd.) (2003b) : Evaluation des crues dans les bassins versants de Suisse. Guide pratique. Rapports de l'OFEG. Série Eaux No 4, Berne.

OFEV (2015): Rapports des stations dur la statistique des crues - Guide de lecture. BAFU, Bern.

Annexe

A Détermination de la valeur seuil pour délimiter les valeurs extrêmes

La valeur seuil u qui sert à délimiter les extrêmes de la méthode POT pour la période d'étude 1974 - 2015 (cf. point 2.2.1) est fixée à 105 m³/s au moyen du «mean residual life plot» (cf. figure 14).

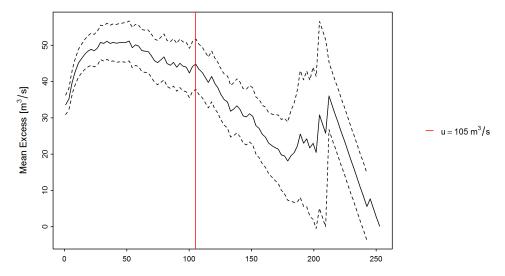


FIGURE 14 – «mean residual life plot» avec le seuil déterminé u (ligne rouge), dépassement moyen (ligne noire), intervalle de confiance à 95 % (traitillés)

B Glossaire

Période d'étude	Période de temps limitée dont provient un échantillon de débits de crue, cet échantillon étant considéré comme représentatif de l'ensemble des éléments. On admet que les caractéristiques de l'ensemble des éléments sont représentées approximativement par cet échantillon.
Statistique de la déviance	La statistique de déviance sert à évaluer l'adéquation d'un modèle pour un certain ensemble de données.
Deltamethode	L'OFEV applique la méthode delta pour calculer les intervalles de confiance dans les Return Level Plots. Cette méthode se fonde sur un développement de Taylor de la fonction des HQT et sur une distribution asymptotique normale (pour les détails techniques, cf. Coles 2001, p. 33).
Qualité du modèle, qualité de l'ajustement ou adéqua- tion	Mesure de l'écart qui sépare un modèle statistique (valeurs théoriques) et une quantité d'observations ou de relevés (données empiriques).
HQ_{T}	Débit de crue déterminé à l'aide d'une fonction de répartition pour une période de retour prédéfinie. Le débit HQ_T est une estimation qui peut être inférieure ou supérieure à la valeur réelle des débits de crue dont la période de récurrence statistique est de T années. Le HQ_T est également appelé «temps de retour». Les HQ_T calculés à l'aide des méthodes paramétriques sont valables pour toute une période (cas stationnaire) ou pour l'année sous revue (cas non stationnaire).
Intervalle de confiance	Les intervalles de confiance reflètent l'incertitude des résultats d'un modèle statistique. Ils ne tiennent cependant compte que de l'erreur inhérente au modèle, mais pas d'autres incertitudes (erreurs de mesure, p. ex.).
Méthode du maximum de vraisemblance	Nom d'une méthode qui estime les paramètres d'une fonction de répartition à partir des informations d'un échantillon par la maximisation de la fonction logarithmique de vraisemblance .
Méthode paramétrique	L'un des grands objectifs de la statistique est d'étudier les données d'un échantillon afin d'en tirer des conclusions pour un ensemble d'éléments inconnus. Les méthodes paramétriques constituent un moyen d'y parvenir. Elles partent de l'hypothèse que l'ensemble d'éléments présente une distribution des probabilités prédéfinie qui est déterminée de manière univoque par un ou plusieurs paramètres. Les deux méthodes considérées se fondent sur la distribution selon la loi d'extremum généralisée (BLOCK) et, respectivement, sur la distribution selon la loi de Pareto généralisée (POT), car ces deux distributions reflètent au mieux la nature des données (maxima par blocs et données dépassant une certaine valeur seuil) (cf. Coles 2001).
Méthode de Block Maximum (BLOCK)	La méthode de Block Maximum (BLOCK) définit la valeur maximale enregistrée au cours d'un intervalle de temps (ou «bloc», qui correspond ici à une année) comme étant la valeur extrême (cf. guide de lecture point 2.1.1 ou Coles 2001, point 3.1).
Méthode de Peaks Over Threshold (POT)	La méthode de Peaks Over Threshold (POT) considère comme valeurs extrêmes celles qui dépassent une certaine valeur seuil u (exprimée en m3/s ou en l/s). Avant d'être utilisées, les données sont corrigées de l'effet cluster (cf. guide de lecture point 2.1.2 ou Coles 2001, point 4.2).

Probability Plot (P-P-Plot)	Outil d'appréciation graphique qui consiste à juxtaposer les fonctions de distribution de deux variables statistiques afin de comparer leurs distributions. Il s'agit ici des fréquences empiriques cumulées et des données cumulées de la fonction théorique. Plus les données s'alignent sur la première bissectrice, plus il est permis de penser que les hypothèses du modèle sont correctes. (Ce diagramme contient les mêmes informations que le Q-Q-Plot, représentées sur une autre échelle.)
Quantile Plot (Q-Q-Plot)	Outil d'appréciation graphique qui consiste à juxtaposer les quantiles de deux variables statistiques, afin de comparer leur distribution. Il s'agit ici des débits observés et des débits calculés à l'aide d'un modèle. Si les quantiles empiriques et théoriques coïncident approximativement, les valeurs se situeront près de la première bissectrice du graphique. (Ce diagramme contient les mêmes informations que le P-P-Plot, représentées sur une autre échelle.) Remarque : Les quantiles théoriques sont calculés à partir de la fonction inverse de la fonction de répartition. Les axes sont dès lors permutés pour permettre une comparaison visuelle directe avec le Probability Plot correspondant.
Stationnarité	Lorsque l'on observe, dans une station de mesure, que le mode d'écoulement n'affiche pas de modification sensible durant la période d'observation, il est recommandé d'appliquer un modèle stationnaire. Dans ce cas, on part de l'hypothèse que tous les paramètres de la fonction de répartition demeurent constants durant toute la période d'étude.
Non-stationnarité	Des modèles non stationnaires sont utilisés pour décrire un mode d'écoulement qui subit des changements au fil du temps. Ces modifications peuvent avoir différentes origines : changement d'appareils et de méthodes de mesure, déplacement de la station, modification du lit du cours d'eau ou influence anthropique. Si l'influence anthropique est en cause, il est le plus souvent impossible d'attribuer les changements observés à une seule intervention, car ils résultent de la combinaison de plusieurs mesures relevant de la gestion de l'eau. Lorsqu'une modification des données au fil du temps est probable, les paramètres de la fonction de répartition correspondante sont modélisés en fonction du temps. Par conséquent, les HQ _T établis par calcul changent également au fil du temps.
Fonction de répartition	Cette fonction décrit l'ensemble des débits de crue d'un bassin versant. Elle indique la probabilité qu'un débit de crue HQ soit atteint ou non au cours d'une année.
Distribution empirique	Cette distribution peut être déterminée à partir de l'échantillon choisi.
Distribution théorique de probabilités	Elle permet de passer de l'échantillon choisi à l'ensemble des éléments. Nombre de fonctions de distribution théorique remplissent les conditions pour s'appliquer en statistique des crues, mais aucune ne peut garantir les meilleurs résultats pour tous les échantillons.

Paramètres de distribution	
κ Paramètre de forme (kappa)	Le paramètre de forme κ est en corrélation directe avec ce que l'on appelle la «Heaviness of Tail» de la distribution. Le Tail étant le domaine qui comprend les valeurs extrêmes supérieures. Lorsque κ est grand, le nombre de ces valeurs extrêmes est élevé. Lorsque κ est négatif, on admet au contraire que ces valeurs extrêmes restent en deçà d'une limite supérieure.
λ Taux d'occurrences (lambda)	Dans la méthode POT, ce paramètre correspond au nombre moyen de dépassements du seuil pendant l'intervalle d'une année.
μ Paramètre de position (mu)	Ce paramètre décrit la position moyenne des éléments d'un échantillon (ici, les débits observés) par rapport à l'échelle de mesure (en l'occurrence, m^3/s ou l/s).