

Dipartimento federale dell'ambiente, dei trasporti, dell'energia e delle comunicazioni DATEC

Ufficio federale dell'ambiente UFAM

STATISTICA SULLE PIENE

RAPPORTO DELLA STAZIONE

Ticino - Bellinzona

Indice

1	Basi di dati	2
2	Risultati delle procedure parametriche 2.1 L'approccio «block maximum» (BLOCK) 2.1.1 Intero periodo di analisi: 1919-2015 2.1.1.a Variante di modello stazionaria 2.1.1.b Variante di modello non stazionaria 2.1.2 Periodo di riferimento: 1974-2015 2.1.2.a Variante di modello stazionaria 2.2 L'approccio «Peaks Over Threshold» (POT) 2.2.1 Periodo di analisi POT: 1974-2015	7 9 10 10 12
3	2.2.1.a Variante di modello stazionaria	12 15 15
4	Bibliografia	17
A	A Determinazione del valore soglia per delimitare i valori estremi	

1 Basi di dati

Per le analisi statistiche dei valori estremi sono disponibili i seguenti dati relativi alle portate:

Dati disponibili	dal	al
Massime mensili digitali	01.01.1914	31.12.2015
Massime giornaliere digitali	01.01.1974	31.12.2015

Un limnigrafo è stato messo in funzione le 03. maggio 1918.

Per le analisi sono utilizzati gli anni completi delle massime mensili registrate dal limnigrafo oppure le massime giornaliere digitali (cfr. cap. 2).

La portata più elevata è stata osservata come segue:

Picco di portata più elevato	Data	Portata
Massima giornaliera più elevata	25.09.1927	$1500 \text{ m}^3/\text{s}$
Massima mensile più elevata	18.07.1987	$1475 \text{ m}^3/\text{s}$

I dati relativi alle portate possono essere contraddistinti come segue:

Andamento della portata	Descrizione	
Regime di portata	Non classificabile in modo univoco: Deflussi superiori in estate e	
	autunno, deflussi inferiori in inverno.	
Effetto della stagionalità	Chiaramente riconoscibile osservando le massime mensili e giornaliere.	
	(figura 3 et figura 4)	
Influsso	Influsso di diversi laghi e centrali idroelettriche: Lago di Luzzone 108	
	m ³ (1963), Lago Ritom 53 Mio m ³ (1920, ampliamento 1950), Lago di	
	Lucendro 25 Mio m ³ (1947), Lago della Sella 9.2 Mio. m ³ (1947), Lago	
	di Lucendro 25 Mio. m³ (1944), Lago d'Isola 6.5 m³ (1960) e alcuni	
	centrali idroelettriche. Tuttavia, gli effetti di questi influssi non sono	
	quasi visibili nei dati. Soltanto dal 1960 si osserva un aumento dei valori	
	minimi delle massime mensili, mentre le massime annuali non registrano	
	variazioni. (cfr. figura 1 e 2).	

Le massime annuali oscillano tra 250 e 1500 $\rm m^3/s$ circa, con una dispersione dei valori elevata. Il valore più elevato è stato registrato nel 1927 (1500 $\rm m^3/s$) e per cinque volte è stato superato il valore di 1400 $\rm m^3/s$. Dall'analisi risulta un punto di rottura non significativo attorno al 1949 (intervallo di confidenza non calcolabile). Il punto di rottura non sono riconoscibile nei dati. Dal punto di vista idrologico quest'ultimo non è spiegabile. Per questo motivo si rinuncia a un periodo di analisi a partire dal punto di rottura.

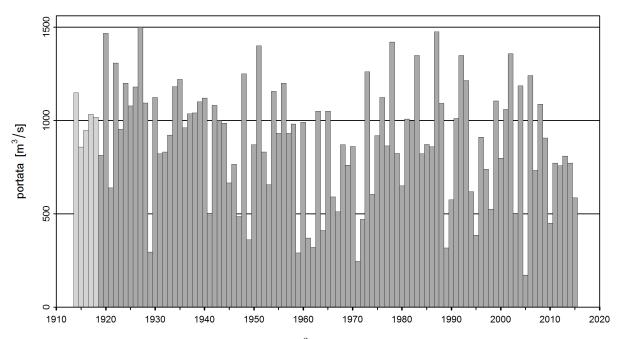


Figura 1: Serie temporale delle massime annuali $[m^3/s]$ (1914 - 2015, Grigio chiaro: massime annuali non utilizzate per la statistica, grigio scuro : massime annuali utilizzate)

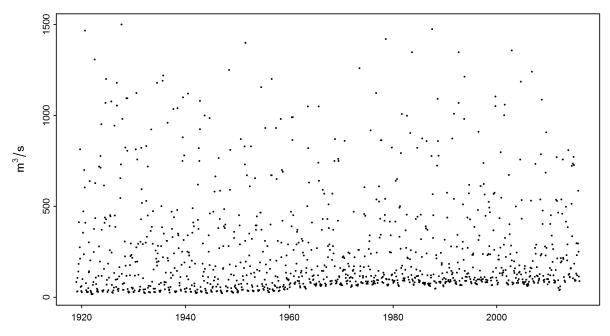


Figura 2: Serie temporale delle massime mensili $[\mathrm{m}^3/\mathrm{s}]~(01.01.1919$ - 31.12.2015)

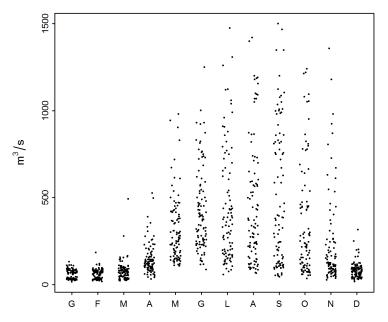


Figura 3: Andamento stagionale delle massime mensili $[\mathrm{m}^3/\mathrm{s}]~(01.01.1919$ - 31.12.2015)

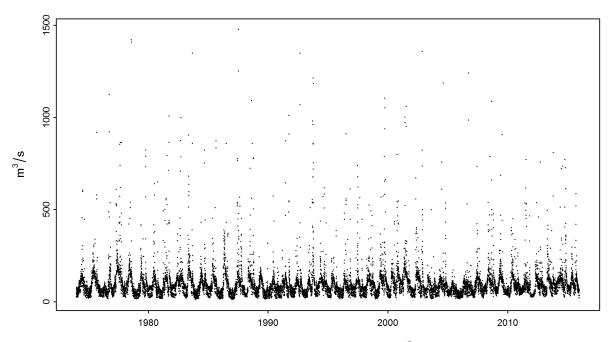


Figura 4: Serie temporale delle portate giornaliere massime $[\mathrm{m}^3/\mathrm{s}]~(01.01.1974$ - 31.12.2015)

Riassunto delle varianti di modello

Variazioni	Effetti	Conseguenze
diversi laghi e centrali idroelettriche	i valori minimi delle massime	Presumibilmente stazionario
	mensili aumentano leggermente	

Analisi dei punti di rottura

Anno	Punto di rottura significativo	Conseguenze
1940 / 1941	no	Il periodo di analisi non viene suddiviso, dato che
		non si evince alcuna motivazione dalla documen-
		tazione relativa alla stazione e al bacino imbrifero.
		Utilizzo di 1941 come t_0 (cfr. capitolo 2).

2 Risultati delle procedure parametriche

Con l'ausilio di due procedure parametriche (approcci BLOCK e POT) sono stimate le probabilità di piena HQ_T . I due approcci si distinguono nel metodo con il quale vengono identificati i valori estremi. Si basano sui seguenti parametri e dati iniziali del modello:

Procedura parametrica	Pa	arametri	Dati iniziali del modello
Block Maximum (BLOCK)	μ	Parametro di posizione	Massime annuali
	σ	Parametro di scala	
	κ	Parametro di forma	
Peaks Over Threshold (POT)	λ	Tasso di incidenza	Massime giornaliere
	σ	Parametro di scala ¹	
	κ	Parametro di forma	

Per entrambi gli approcci parametrici viene calcolato il caso stazionario. Ciò significa che si suppone che tutti i parametri della funzione di ripartizione rimangano costanti sull'arco dell'intero periodo di analisi. Se tuttavia la storia della stazione lascia supporre una variazione temporale, i parametri della funzione di ripartizione corrispondente possono essere modellizzati in funzione del tempo. Vengono utilizzate le seguenti varianti di modello, riportate alle tabelle 1 e 2:

Tabella 1: Varianti di metodo BLOCK. μ Parametro di posizione (mu), σ Parametro di scala (sigma), κ Parametro di forma (kappa)

Varianti di metodo BLOCK					
Nome	Descrizione	Parametro (t: anno)	Numero di parametri		
stat	Variante stazionaria	μ, σ, κ	3		
mul	Trend lineare di μ	$\mu = a_1 + a_2 * t, \sigma, \kappa$	4		
muq	Trend quadratico di μ	$\mu = a_1 + a_2 * t + a_3 * t^2, \sigma, \kappa$	5		
sigl	Trend lineare di σ	$\mu, \sigma = b_1 + b_2 * t, \kappa$	4		
musigl	Trend lineare di μ e σ	$\mu = a_1 + a_2 * t, \sigma = b_1 + b_2 * t, \kappa$	5		
mujump	Variazione non continua di	$\mu = a_1 + a_2 * i, \sigma, \kappa, i = 0 \text{ per}$	4		
	μ al momento t_0	$t < t_0, i = 1 \text{ per } t \ge t_0$			

Tabella 2: Varianti di metodo POT. σ Parametro di scala (sigma), κ Parametro di forma (kappa)

Varianti	Varianti di metodo POT					
Nome	Descrizione	Parametro (t: anno)	Numero di parametri			
stat	Variante stazionaria	σ, κ	2			
sigl	Trend lineare di σ	$\sigma = b_1 + b_2 * t, \kappa$	3			
sigjump	Variazione non continua di σ	$\sigma = b_1 + b_2 * i, \kappa,$	3			
	al memento t_0	$i = 0 \text{ per } t < t_0, i = 1 \text{ per } t \ge$				
		t_0				

La qualità delle varianti di modello viene valutata graficamente mediante un probability plot e un quantile plot (cfr. p. es. figura 5 in alto e <u>guida</u> cap. 2.2.3). Meglio i dati sono posizionati lungo la diagonale unitaria, più si può supporre che le ipotesi del modello siano corrette. Sulla base di uno schema della procedura si decide quale modello non stazionario utilizzare in futuro (cfr. fig. 5 al capitolo 2.1.3 della <u>guida</u>). Di seguito sono indicate le procedure con i risultati migliori.

 $^{^1}$ Numericamente, il parametro di scala σ dell'approccio POT non coincide con quello σ dell'approccio BLOCK.

2.1 L'approccio «block maximum» (BLOCK)

L'approccio «block maximum» definisce il valore massimo all'interno di un intervallo di tempo (block: nel caso in esame un anno) come valore estremo.

Nel rapporto vengono descritte le seguenti varianti dell'approccio BLOCK:

Periodo di analisi	Descrizione	Variante di modello scelta	Capitolo
1919 - 2015	intero periodo di analisi	stat mujump	capitolo 2.1.1.a capitolo 2.1.1.b
1974 - 2015	periodo di riferimento	stat	capitolo 2.1.2.a

2.1.1 Intero periodo di analisi: 1919-2015

2.1.1.a Variante di modello stazionaria

Procedura	Variante di modello	Periodo di analisi Dati iniziali del modello		Osservazioni
BLOCK	stat	1919-2015	Massime annuali	-

Numero di valori utilizzati e parametri di modello stimati:

Numero di valori n	Parametro di posizione $\hat{\mu}$	Parametro di scala $\hat{\sigma}$	Parametro di forma $\hat{\kappa}$
97	791.31	327.56	-0.3987

La qualità della variante di modello «stat» sull' intero periodo di analisi viene valutata graficamente sulla base dei plot diagnostici di cui alla figura 5.

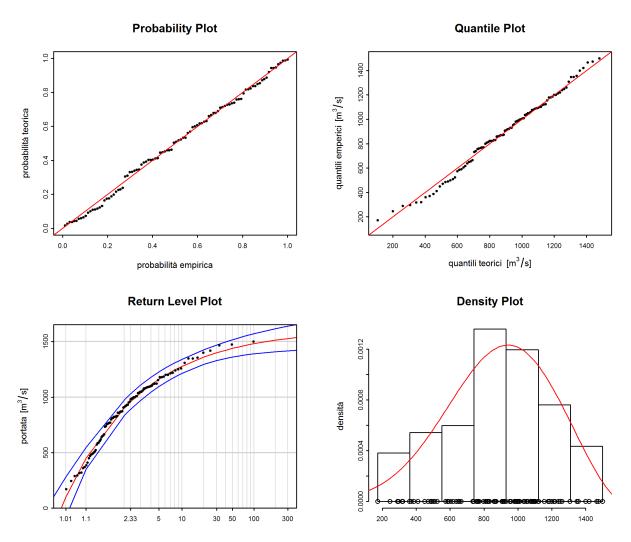


Figura 5: Plot diagnostici della variante di modello «stat» dell'approccio BLOCK(1919-2015)

Valutazione plot diagnostici (figura 5):

Criteri	${f Valutazione^2}$	Osservazioni
Adattamento settore inferiore	buono	-
Adattamento settore medio	buono	-
Adattamento settore superiore	buono	il valore più elevato ben stimato
Intervallo di confidenza	ridotto	-

La seguente tabella contiene i livelli di portata determinati per l'ultimo anno per diversi periodi di ritorno, calcolati con la variante di modello stazionaria dell'approccio BLOCK sull' intero periodo di analisi 1919-2015 (compreso l'intervallo di confidenza al $95\,\%$, calcolato con il metodo delta):

HQ_{T}	Limite di confidenza inferiore $[m^3/s]$	Portata $[m^3/s]$	Limite di confidenza superiore [m³/s]
$\overline{\mathrm{HQ}_2}$	833	903	973
HQ_2 HQ_{10}	1215	1278	1341
HQ_{30}	1330	1400	1470
HQ_{100}	1391	1482	1572
HQ_{300}	1417	1528	1640

 $^{^2 {}m cfr.}$ guida capitolo 2.2.3

2.1.1.b Variante di modello non stazionaria

Il raffronto tra le diverse varianti di modello dell'approccio BLOCK durante l'intero periodo di analisi dimostra che soltanto il modello «mujump» si differenzia in modo sostanziale dal modello stazionario («stat»).³ Per questo motivo di seguito vengono raffigurati i risultati di «mujump» (cfr. figura 5 della guida).

Procedura	Variante di modello	Periodo di analisi	Dati iniziali del modello	Osservazioni
BLOCK	mujump1941	1919-2015	Massime annuali	-

Numero di valori utilizzati e parametri di modello stimati:

Numero di valori n	Parametro d	li posizione $\hat{\mu}^4$	Parametro di scala $\hat{\sigma}$	Parametro di forma $\hat{\kappa}$
	$\mathbf{a_1}$	$\mathbf{a_2}$		
97	925.53	-175.11	312.49	-0.3685

La qualità della variante di modello «mujump1941» sull' intero periodo di analisi viene valutata graficamente sulla base dei plot diagnostici di cui alla figura 6.

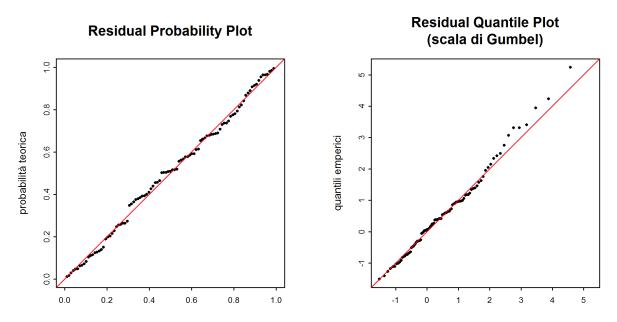


Figura 6: Plot diagnostici della variante di modello «mujump1941» dell'approccio BLOCK(1919-2015)

Valutazione plot diagnostici (figura 6):

Criteri	${f Valutazione}^5$	Osservazioni
Adattamento settore inferiore	buono	-
Adattamento settore medio	buono	-
Adattamento settore superiore	buono-medio	alcuni valori leggermente sottostimati
Raffronto con il modello stazionario	peggiore	i valori più elevati sono più lontani dalla
		diagonale unitaria

³Sulla base dei risultati dell'analisi dei punti di rottura, come momento t₀ per il modello «mujump» viene scelto l'anno 1941 (cfr. cap. 1).

 $^{^{(}a)}$ (cfr. tabella 1) $^{4}\hat{\mu}=a_1+a_2*i,\,i=0$ per t
t $_0,\,i=1$ per t $\geq t_0$ (cfr. tabella 1) 5 Cfr.
guida capitolo 2.2.3

La seguente tabella contiene i livelli di portata determinati per l'ultimo anno per diversi periodi di ritorno, calcolati con la variante di modello non stazionaria dell'approccio BLOCK sull' intero periodo di analisi 1919-2015 (compreso l'intervallo di confidenza al 95 %, calcolato con il metodo delta):

$ m HQ_T$	Limite di confidenza inferiore $[m^3/s]$	Portata [m ³ /s]	Limite di confidenza superiore [m³/s]
HQ_2	778	858	937
HQ_{10}	1157	1228	1300
HQ_{30}	1278	1355	1431
HQ_{100}	1346	1443	1540
HQ_{300}	1375	1495	1614

La figura 7 illustra la variazione dell' HQ_{100} tra 1919 e 2015 calcolato con il modello «mujump1941».

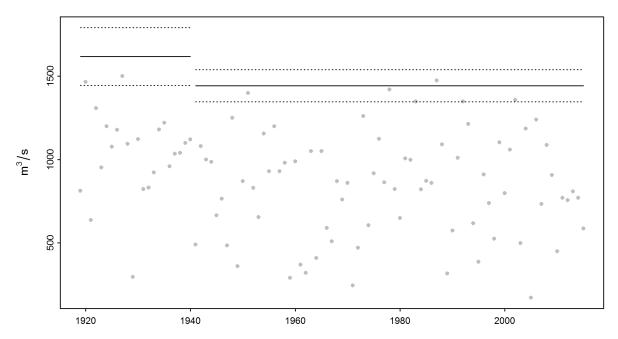


Figura 7: Variazione dell' HQ_{100} calcolato con la variante di modello «mujump1941») e dell'intervallo di confidenza al 95 % (metodo delta; linee tratteggiate) nel periodo 1919-2015

2.1.2 Periodo di riferimento: 1974-2015

2.1.2.a Variante di modello stazionaria

Procedura	Variante di modello	Periodo di analisi	Dati iniziali del modello	Osservazioni
BLOCK	stat	1974-2015	Massime annuali	-

Numero di valori utilizzati e parametri di modello stimati:

Numero di valori n	Parametro di posizione $\hat{\mu}$	Parametro di scala $\hat{\sigma}$	Parametro di forma $\hat{\kappa}$
42	777.65	311.7	-0.3444

La qualità della variante di modello «stat» sullo periodo di riferimento viene valutata graficamente sulla base dei plot diagnostici di cui alla figura 8.

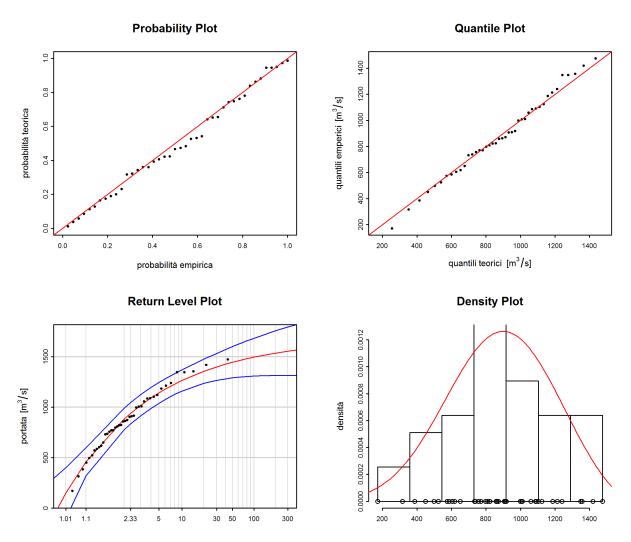


Figura 8: Plot diagnostici della variante di modello «stat» dell'approccio BLOCK(1974-2015)

Valutazione plot diagnostici (figura 8):

Criteri	${f Valutazione}^6$	Osservazioni
Adattamento settore inferiore	buono	-
Adattamento settore medio	buono	-
Adattamento settore superiore	buono-medio	alcuni valori leggermente sottostimati
Intervallo di confidenza	ridotto	-

La seguente tabella contiene i livelli di portata determinati per l'ultimo anno per diversi periodi di ritorno, calcolati con la variante di modello stazionaria dell'approccio BLOCK sullo periodo di riferimento 1974-2015 (compreso l'intervallo di confidenza al 95 %, calcolato con il metodo delta):

$\mathbf{HQ_{T}}$	Limite di confidenza	Portata [m ³ /s]	Limite di confidenza
	$inferiore [m^3/s]$		superiore $[{ m m^3/s}]$
$\overline{\mathrm{HQ}_2}$	779	885	991
HQ_{10}	1161	1266	1370
HQ_{30}	1267	1401	1534
HQ_{100}	1310	1497	1684
HQ_{300}	1317	1556	1795

 $^{^6{\}rm cfr.}$ guida capitolo2.2.3

2.2 L'approccio «Peaks Over Threshold» (POT)

Nell'approccio «peaks over threshold» (POT) i valori sono considerati eventi estremi se superano un valore soglia u elevato.

Per calcolare la procedura POT vengono utilizzate le massime giornaliere a partire dal 1974. Il trattamento dei dati avviene al netto dei cluster. Per Ticino - Bellinzona, l'intervallo L tra due eventi indipendenti viene fissato al valore minimo di 12 giorni.

Sono state analizzate le seguenti varianti di modello dell'approccio POT:

Periodo di analisi	Descrizione	Variante di modello scelta	Capitolo
1974 - 2015	periodo di analisi POT	stat	capitolo 2.2.1.a

Per il periodo di analisi POT non si osservano differenze significative tra le varianti di modello stazionarie e quelle non stazionarie. 7

2.2.1 Periodo di analisi POT: 1974-2015

In questo caso come valore soglia u è stato scelto 525 m³/s (cfr. allegato A). La figura 9 illustra gli eventi estremi effettivamente utilizzati.

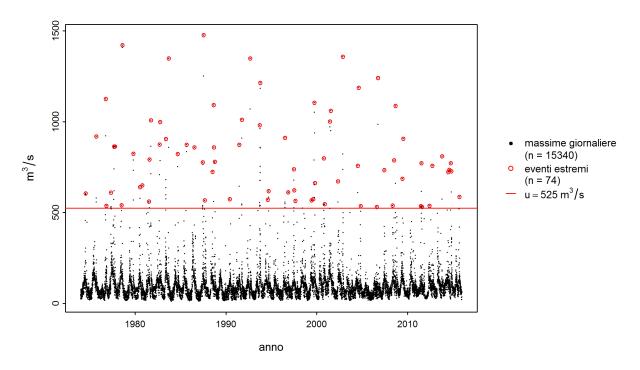


Figura 9: Scelta degli eventi estremi utilizzati per l'approccio POT

2.2.1.a Variante di modello stazionaria

Procedura	Variante di modello	Periodo di analisi	Dati iniziali del modello	Osservazioni
POT	stat	1974-2015	Massime giornaliere	=

 $^{^7\}mathrm{Come}$ punto t_0 per il modello «sigjump» viene scelto l'anno 1995.

Numero di valori utilizzati e parametri di modello stimati:

Valore soglia	Numero di valori	Tasso di incidenza	Parametro di scala	Parametro di forma
u	n	$\hat{\lambda}$	$\hat{\sigma}$	$\hat{\kappa}$
${525 \text{ m}^3/\text{s}}$	74	1.76	386.04	-0.314

La qualità della variante di modello «stat» sullo periodo di analisi POT viene valutata graficamente sulla base dei plot diagnostici di cui alla figura 10.

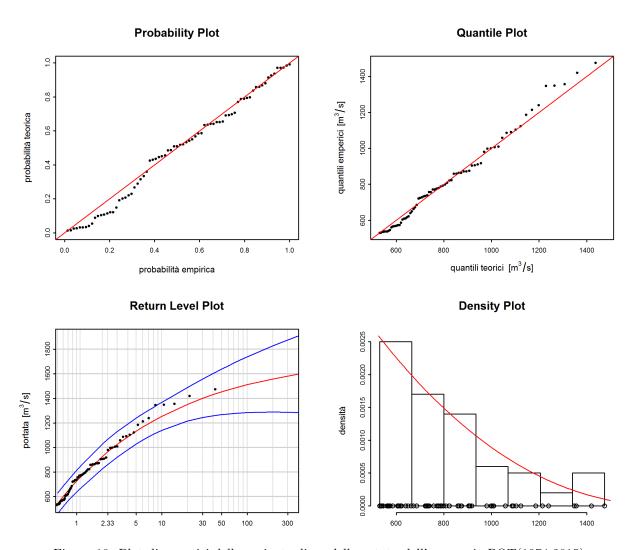


Figura 10: Plot diagnostici della variante di modello «stat» dell'approccio POT(1974-2015)

Valutazione plot diagnostici (figura 10):

Criteri	${f Valutazione}^8$	Osservazioni
Adattamento settore inferiore	buono	-
Adattamento settore medio	medio	dispersione media dei valori
Adattamento settore superiore	buono-medio	alcuni valori leggermente sottostimati
Intervallo di confidenza	ridotto-medio	elevato per periodi di ritorno estesi

 $^{^8 {}m cfr.}$ guida capitolo 2.2.3

La seguente tabella contiene i livelli di portata determinati per l'ultimo anno per diversi periodi di ritorno, calcolati con la variante di modello stazionaria dell'approccio POT sullo periodo di analisi POT 1974-2015 (compreso l'intervallo di confidenza al 95 %, calcolato con il metodo delta):

HQ_{T}	Limite di confidenza inferiore $[m^3/s]$	Portata $[{ m m}^3/{ m s}]$	Limite di confidenza superiore [m³/s]
$\overline{\mathrm{HQ}_{2}}$	825	927	1028
HQ_2 HQ_{10}	1141	1255	1369
HQ_{30}	1244	1401	1557
HQ_{100}	1285	1512	1739
HQ_{300}	1288	1583	1878

3 Risultati a confronto

La figura 11 illustra gli HQ_T delle varianti di modello stazionarie e di quelle non stazionarie che si meglio adattavano ai dati in entrambe le procedure parametriche. Sia i valori che l'ampiezza degli intervalli di confidenza, i quali riflettono l'incertezza, variano. Generalmente queste differenze aumentano tanto più ampio è il periodo di ritorno T e tanto minore è la quantità di dati che sta alla base.

3.1 Valutazione dei diversi periodi di analisi

Soltanto con l'approccio BLOCK, che si basa sull'analisi di massime mensili, è possibile analizzare il periodo 1919 - 2015. Per illustrare l'influsso del periodo di misurazione sono stati messi a confronto i risultati dell'approccio BLOCK per i diversi periodi di analisi:

Periodo	HQ_{T}	Intervallo di confidenza
Periodo di riferimento /	valori generalmente superiori	nettamente superiori
Intero periodo di analisi	per periodi di ritorno estesi	

Dopo il 1974, mediamente si osservano piene annuali leggermente superiori di nuovo (figura 1). Ne conseguono HQ_T più elevati nel periodo di riferimento per periodi di ritorno estesi. Considerata la quantità ridotta di dati, nel periodo di riferimento l'intervallo di confidenza è molto più ampio rispetto all'intero periodo di analisi.

3.2 Raffronto generico dei diversi approcci di modello

Alla figura 11 e alla tabella corrispondente sono riassunti i risultati dei diversi approcci di modello. Ne risulta quanto segue:

Differenze nei risultati degli HQ_T calcolati per i due approcci:

Gli HQ_T dell'approccio POT sono generalmente superiori a quelli dell'approccio BLOCK per periodi di ritorno estesi e per periodi di ritorno molto brevi.

Differenze negli intervalli di confidenza calcolati per i due approcci:

In generale, le incertezze e di conseguenza gli intervalli di confidenza aumentano in funzione dell'ampiezza del periodo di ritorno T. Gli intervalli di confidenza dell'approccio POT sono più ampi rispetto a quelli dell'approccio BLOCK.

Varianti stazionarie e non stazionarie a confronto:

Nel caso dell'approccio BLOCK, una variante non stazionaria non può migliorare la qualità del modello, poiché gli valori elevati sono leggermente sottostimati. I valori di ritorno calcolati per il 2015 sono leggermente inferiori a quelli delle varianti di modello stazionarie. Poiché le variazioni non sono riconducibili in modo inequivocabile a una causa, non è possibile esprimersi sull'evoluzione futura.

I risultati di queste analisi statistiche costituiscono soltanto una delle numerose basi per rispondere a questioni concrete. Per stimare il rischio di piena sono indispensabili tra l'altro conoscenze dei processi idrologici nel bacino imbrifero nonché riflessioni sugli scenari «worst case» per le precipitazioni e le portate. La divisione Idrologia dell'UFAM raccomanda un modo di procedere di tipo «idrologico-argomentativo» come proposto da Merz e Böschl (2008, citato in DWA 2012:52).

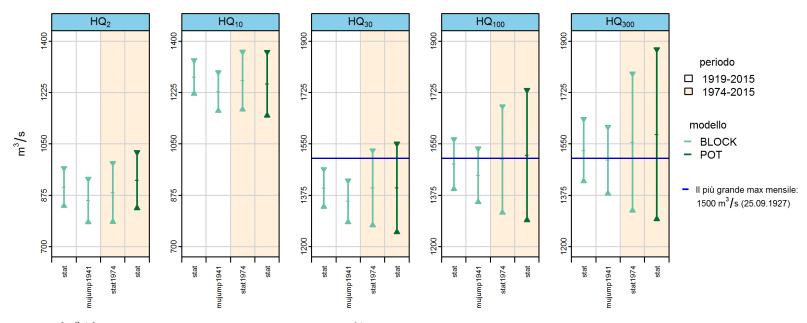


Figura 11: HQ_T [m³/s] compreso un intervallo di confidenza al 95 %, calcolato con le varianti di modello stazionarie e quelle più adatte degli approcci BLOCK e POT per il anno 2015

Periodo di analisi	Approccio	Adattar	nento		Osservazione
1919 - 2015	BLOCK stat	buono	buono	buono	il valore più elevato ben stimato
	BLOCK mujump1941	buono	buono	buono-	alcuni valori leggermente sottostimati
				medio	i valori più elevati sono più lontani dalla diagonale unitaria
1974 - 2015	BLOCK stat	buono	buono	buono-	alcuni valori leggermente sottostimati
				medio	
1974 - 2015	POT stat	buono	medio	buono-	alcuni valori leggermente sottostimati
				medio	

4 Bibliografia

Baumgartner, E., Boldi, M.-O., Kan, C., Schick, S. (2013): Hochwasserstatistik am BAFU - Diskussion eines neuen Methodensets. Wasser Energie Luft, quaderno 2/2013. Baden (in tedesco).

Coles, S. (2001): An Introduction to Statistical Modeling of Extreme Values. Springer. Londra (in inglese).

DWA (ed.) (2012): Merkblatt DWA-M 552. Ermittlung von Hochwasserwahrscheinlichkeiten. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. Hennef (in tedesco).

UFAEG (ed.) (2003a): Dizionario della protezione contro le piene. Haupt Verlag, Berna.

UFAEG (ed.) (2003b): Hochwasserabschätzung in schweizerischen Einzugsgebieten. Praxishilfe. Berichte des BWG. Serie Wasser n. 4, Berna (in tedesco).

UFAM (2017): Guida ai rapporti delle stazioni relativi alla statistica sulle piene. UFAM, Berna.

Allegato

A Determinazione del valore soglia per delimitare i valori estremi

Il valore soglia u per delimitare i valori estremi dell'approccio POT per il periodo di analisi 1974 - 2015 (cfr. cap. 2.2.1) viene fissato sulla base del «mean residual life plot», a 525 m³/s (cfr. figura 12).

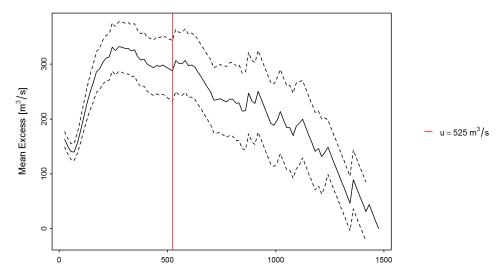


Figura 12: «mean residual life plot» con valore soglia scelto u (linea rossa), «mean excess» (linea nera), intervallo di confidenza al 95 % (linee tratteggiate)

B Glossario

Periodo di analisi	Periodo limitato all'origine di un campione delle portate di piena considerato rappresentativo per la popolazione statistica. Si parte dal presupposto che il campione rispecchia il più possibile le caratteristiche della popolazione statistica.
Statistica della devianza	La statistica della devianza consente di studiare la capacità di adattamento di un modello a un determinato set di dati.
Metodo delta	L'UFAM utilizza il metodo delta per calcolare gli intervalli di confidenza nei return level plot. Il metodo si basa su uno sviluppo di Taylor della funzione HQT e su una distribuzione asintotica normale (per dettagli tecnici cfr. Coles 2001, pag. 33).
Qualità, anche capacità di adattamento o adattamento	Misura della differenza tra un modello statistico (valori teorici) e una serie di osservazioni o misurazioni (dati empirici).
$ m HQ_T$	Portata di piena determinata mediante una funzione di distribuzione per un determinato periodo di ritorno T. L' HQ_T è un valore stimato che può situarsi al di sopra o al di sotto del valore reale della portata di piena con un periodo di ritorno statistico pari a T anni. L' HQ_T viene anche denominato valore di ritorno. Gli HQ_T calcolati mediante le procedure parametriche valgono per l'intero periodo (caso stazionario) o per l'anno di riferimento (caso non stazionario).
Intervallo di confidenza	Gli intervalli di confidenza descrivono l'incertezza dell'output di un modello statistico. Considerano i difetti del modello stesso, ma non altre incertezze (ad es. errori nella misurazione).
Metodo della massima vero- simiglianza	Denominazione di una procedura che stima i parametri di una funzione di distribuzione a partire dalle informazioni relative a un campione.
Procedure parametriche	Un obiettivo fondamentale della statistica è ricavare, mediante i dati relativi a un campione, informazioni non ancora note sulla popolazione statistica. A tal fine si prestano ad esempio procedure parametriche che suppongono che la popolazione statistica abbia una determinata ripartizione delle probabilità, la quale viene determinata in modo univoco attraverso uno o più parametri. Entrambe le procedure considerate si basano sulla distribuzione generale degli estremi (BLOCK), rispettivamente sulla distribuzione generale di Pareto (POT), in quanto queste distribuzioni sono quelle che riflettono meglio la natura dei dati (block maximum o dati a partire da un determinato valore soglia) (cfr. Coles 2001).
Approccio «Block Maximum» (BLOCK)	Definisce il valore massimo all'interno di un intervallo di tempo (block, nel caso in esame un anno) come valore estremo (cfr. guida cap. 2.1.1 o Coles 2001, cap. 3.1).
Approccio «Peaks Over Threshold» (POT)	In questo approccio i valori sono considerati eventi estremi se superano un valore soglia u (in $\rm m^3/s$ o $\rm l/s$). Il trattamento dei dati avviene al netto dei cluster (cfr. guida cap. 2.1.2 o Coles 2001, cap. 4.2).

Probability Plot (P-P-Plot)	Strumento grafico esplorativo nel quale le funzioni di ripartizione di due variabili statistiche vengono riportate una di fronte all'altra per compararne le distribuzioni. Qui: somma delle frequenze empiriche vs. funzione di distribuzione cumulata teorica. Meglio i dati sono posizionati lungo la diagonale unitaria, più si può supporre che le ipotesi del modello siano corrette (contiene le stesse informazioni del Q-Q plot, raffigurate su una scala diversa).
Quantile Plot (Q-Q-Plot)	Strumento grafico esplorativo nel quale i quantili di due variabili statistiche vengono riportati uno di fronte all'altro per compararne le distribuzioni. Qui: valori di portata osservati vs. dati relativi alle portate calcolati per mezzo di un modello. Se i quantili empirici e teorici corrispondono approssimativamente, nel grafico i valori si trovano vicino alle diagonali (contiene le stesse informazioni del P-P plot, rappresentate su una scala diversa). N.B.: i quantili teorici vengono calcolati a partire dalla funzione inversa della funzione di distribuzioni. Per un raffronto ottico diretto con il probability plot corrispondente, gli assi del quantile plot sono pertanto invertiti.
Stazionarietà	Se presso una stazione di misurazione si osserva che l'andamento delle portate durante il periodo di analisi non subisce variazioni di rilievo, si raccomanda di utilizzare un modello stazionario. Nel caso stazionario, si suppone che tutti i parametri della funzione di ripartizione rimangano costanti durante l'intero periodo di analisi.
Non stazionarietà	I modelli non stazionari vengono utilizzati per descrivere un andamento delle portate soggetto a variazioni nel tempo. Tali cambiamenti possono essere ricondotti alla sostituzione di strumenti o metodi di misurazione, al dislocamento della stazione, a cambiamenti nel corso d'acqua o a influssi antropogeni. Nel caso di questi ultimi, solitamente i cambiamenti non possono essere attribuiti a un singolo intervento, ma sono costituiti dalla sovrapposizione di diverse misure attinenti all'economia delle acque. Se si ipotizza che i dati subiscano variazioni nel tempo, i parametri della funzione di ripartizione corrispondente vengono modellizzati in funzione del tempo. Ciò comporta un cambiamento nel tempo anche degli HQ _T calcolati.
Funzione di distribuzione	Descrive la popolazione statistica delle portate di piena in un bacino imbrifero. La funzione di distribuzione indica le probabilità che una portata di piena HQ venga raggiunta o meno in un anno.
Ripartizione empirica della frequenza	Può essere determinata a partire dal campione scelto.
Ripartizione teorica della probabilità	A partire dal campione scelto si riferisce alla popolazione statistica. Vi sono molteplici funzioni di ripartizione teoriche che soddisfano i presupposti per l'utilizzo nella statistica delle piene, ma nessuna che garantisca i risultati migliori per tutti i campioni.

Parametro di distribuzione	
κ Parametro di forma (kappa)	Il parametro di forma κ è direttamente correlato alla cosiddetta «heaviness of tail» della ripartizione. Con «tail» si intende il settore che presenta outlier verso l'alto. Se κ è elevato, si suppone che questi outlier siano molti. Se invece i valori di κ sono negativi, si suppone che per i valori estremi esista un limite massimo.
λ Tasso di incidenza (lambda)	Nell'approccio POT il tasso di incidenza λ corrisponde al numero medio di superamenti del valore soglia in un intervallo di tempo pari a un anno.
μ Parametro di posizione (mu)	Descrive la posizione media degli elementi del campione (qui: misurazioni delle portate) in riferimento alla scala di misurazione (qui: m^3/s o l/s).