

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Umwelt BAFU

Hochwasserstatistik

Stationsbericht

Aare - Brugg

weitere Erläuterungen: <u>Leitfaden</u> Kontakt: hydrologie@bafu.admin.ch

Inhaltsverzeichnis

1	Datengrundlage	2
2	Resultate der parametrischen Verfahren 2.1 Block Maximum Ansatz (BLOCK) 2.1.1 Gesamte Auswertungsperiode: 1917-2015 2.1.1.a Stationäre Modellvariante 2.1.1.b Nicht stationäre Modellvariante 2.1.2 Auswertungsperiode ab Bruchpunkt: 1974-2015 2.1.2.a Stationäre Modellvariante 2.2 Peaks Over Threshold Ansatz (POT) 2.2.1.a Stationäre Modellvariante	5 6 6 8 9 9 11 11 11
3 4	Vergleich der verschiedenen Resultate 3.1 Beurteilung der unterschiedlichen Auswertungsperioden 3.2 Allgemeiner Vergleich der verschiedenen Modellansätze Literatur	 14 14 14 16
A	nhang A Bestimmung des Schwellenwerts zur Abgrenzung von Extremwerten B Glossar	17 17 18

1 Datengrundlage

Es stehen die folgenden Abflussdaten für die extremwertstatistischen Auswertungen zur Verfügung:

Vorhandene Daten	\mathbf{seit}	bis
Digitale Monatsmaxima	01.01.1916	31.12.2015
Digitale Tagesmaxima	01.01.1974	31.12.2015

Ein Limnigraph wurde am 01. August 1916 in Betrieb genommen.

Für die Auswertungen werden entweder die mit Limnigraph erfassten vollständigen Jahre der Monatsmaxima oder die digitalen Tagesmaxima verwendet (siehe Kapitel 2).

Der grösste Abfluss wurde wie folgt beobachtet:

Grösste Abflussspitze	Datum	Abfluss
Grösstes Monatsmaximum	09.08.2007	$1387 \text{ m}^3/\text{s}$
Grösstes Tagesmaximum	09.08.2007	$1387 \text{ m}^3/\text{s}$

Die Abflussdaten können folgendermassen charakterisiert werden:

Abflussverlauf	Beschreibung		
Abflussregime	Nicht eindeutig klassifizierbar: Kleinere Monatsmaxima im Sommer		
	grösser als im Winter		
Ausprägung der Saisonalität	In Monats- und Tagesmaxima erkennbar (Abbildung 3 und 4)		
Beeinflussung	Beeinflussung durch mehrere Laufkraftwerke an der Aare unterhalb des		
	Bielersees, die Regulierung der Jurarandseen, sowie diverse Kraftwerke		
	oberhalb des Bielersees.		
	2. Juragewässerkorrektion 1962-1973, neues Regulierreglement		
	nach 1982, Einführung der Prognoseregulierung ab 2008 (s. auch		
	Regulierung Jurarandseen).		

Die Jahresmaxima bewegen sich zwischen ungefähr 600 und 1100 m³/s, wobei die Werte in diesem Bereich stark streuen (s. Abbildung 2). Ab Ende der 1960er-Jahre sind die Jahresmaxima deutlich gestiegen. Vor 1968 wurden nur zweimal Jahresmaxima von über 1000 m³/s registriert, seither kommt dies recht häufig vor. Umgekehrt sind Jahresmaxima unter 700 m³/s deutlich seltener geworden.

Der Zeitraum, ab welchem diese Veränderungen in den Jahresmaxima sichtbar sind, fällt mit der 2. Juragewässerkorrektion 1962-1973 zusammen. Nach 1982 wurde zudem ein neues Seeregulierreglement eingeführt. Die Veränderung der Seeregulierung ist in den Monatsmaxima in Abbildung 4 zu erkennen. Die Bruchpunktanalyse ergibt einen signifikanten Bruchpunkt ab 1968 (Konfidenzintervall 1956-1977). Der Zeitpunkt des neuen Regulierreglements liegt ausserhalb des Konfidenzintervalls. Aus diesem Grund wird die Datenreihe ab 1974 unterteilt, also den Zeitpunkt nach Abschluss der 2. Juragewässerkorrektion.

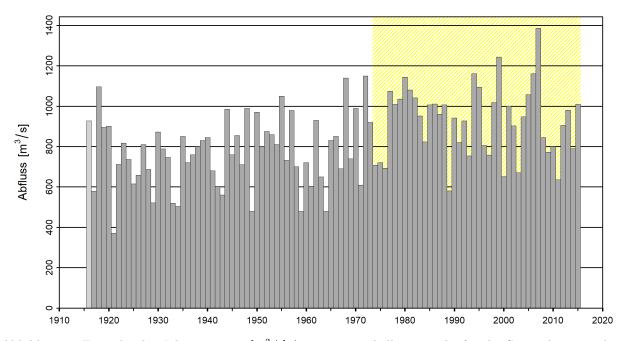


Abbildung 1: Zeitreihe der Jahresmaxima $[m^3/s]$ (1916 - 2015, hellgrau: nicht für die Statistik verwendete Jahresmaxima, dunkelgrau: verwendete Jahresmaxima der gesamten Auswertungsperiode ab Limnigrapheninstallation). Gelb schraffiert: Auswertungsperiode ab Bruchpunkt (1974)

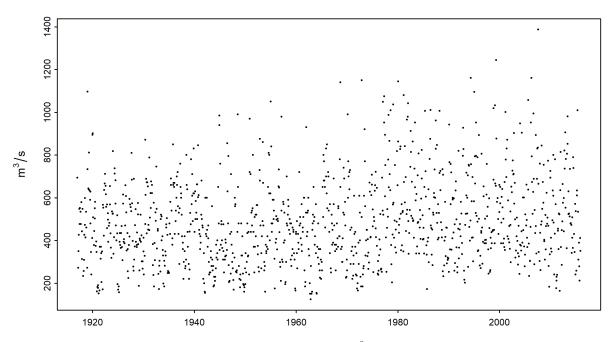


Abbildung 2: Zeitreihe der Monatsmaxima $[\mathrm{m}^3/\mathrm{s}]$ (01.01.1917 - 31.12.2015)

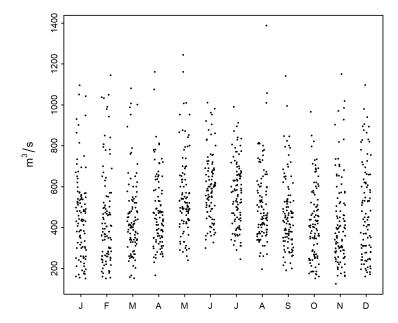


Abbildung 3: Saisonaler Verlauf der Monatsmaxima $[\mathrm{m}^3/\mathrm{s}]$ (01.01.1917 - 31.12.2015)

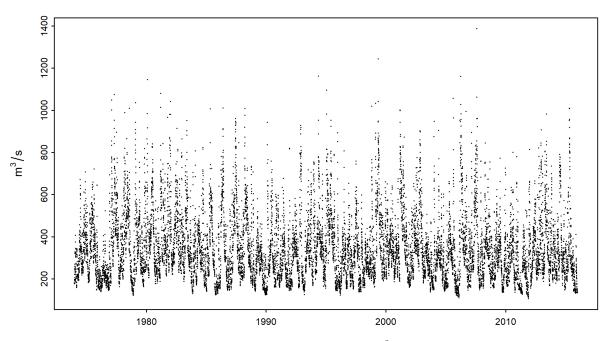


Abbildung 4: Zeitreihe der maximalen Tagesabflüsse $[m^3/s]$ (01.01.1974 - 31.12.2015)

Fazit f	für d	lie M	odellva	rianten
---------	-------	-------	---------	---------

Veränderungen	Auswirkungen	Folgerungen
2. Juragewässerkorrektion 1962-1973	Jahresmaxima werden grösser	Vermutlich nicht stationär

Bruchpunktanalyse

Jahr	Signifikanter Bruchpunkt	Folgerungen
1973 / 1974	ja	Unterteilung der Daten, da der Bruchpunkt mit Unter-
		lagen zu Station und Einzugsgebiet begründbar

2 Resultate der parametrischen Verfahren

Mit Hilfe von zwei parametrischen Verfahren (BLOCK- und POT-Ansatz) werden Hochwasserwahrscheinlichkeiten HQ_T abgeschätzt. Die beiden Ansätze unterscheiden sich in der Methode wie Extremwerte identifiziert werden. Sie basieren auf folgenden Modelleingangsdaten und Parametern:

Parametrisches Verfahren	Parameter	Modelleingangsdaten
Block Maximum (BLOCK)	μ Lageparameter	Jahresmaxima
	σ Skalenparameter	
	κ Formparameter	
Peaks Over Threshold (POT)	λ Ereignisrate	Tagesmaxima
	σ Skalenparameter ¹	
	κ Formparameter	

Für beide parametrischen Ansätze wird jeweils der stationäre Fall berechnet. Das heisst es wird angenommen, dass alle Parameter der Verteilungsfunktion über den gesamten Untersuchungszeitraum konstant sind. Wenn die Stationsgeschichte jedoch eine zeitliche Veränderung vermuten lässt, können die Parameter der entsprechenden Verteilungsfunktion zeitlich abhängig modelliert werden. Folgende, in Tabelle 1 und Tabelle 2 aufgeführten Modellvarianten werden verwendet:

Tabelle 1: Verwendete Modellvarianten des BLOCK-Ansatzes. μ Lageparameter (mu), σ Skalenparameter (sigma), κ Formparameter (kappa)

Modellv	Modellvarianten BLOCK					
Name	Beschreibung	Parameter (t: Jahr)	Anzahl Parameter			
stat	Stationäre Variante	μ, σ, κ	3			
mul	Linearer Trend von μ	$\mu = a_1 + a_2 * t, \sigma, \kappa$	4			
muq	Quadratischer Trend von μ	$\mu=a_1+a_2*t+a_3*t^2,\sigma,\kappa$	5			
sigl	Linearer Trend von σ	$\mu, \sigma = b_1 + b_2 * t, \kappa$	4			
musigl	Linearer Trend von μ und σ	$\mu = a_1 + a_2 * t, \sigma = b_1 + b_2 * t, \kappa$	5			
mujump	Nicht-kontinuierliche Verände-	$\mu = a_1 + a_2 * i, \sigma, \kappa,$	4			
	rung von μ zum Zeitpunkt t ₀	$i = 0$ für $t < t_0, i = 1$ für $t \ge t_0$				

Tabelle 2: Verwendete Modellvarianten des POT-Ansatzes. σ Lageparameter (sigma), κ Formparameter (kappa)

Modelly	Modellvarianten POT					
Name	Beschreibung	Parameter (t: Jahr)	Anzahl Parameter			
stat	Stationäre Variante	σ,κ	2			
sigl	Linearer Trend von σ	$\sigma = b_1 + b_2 * t, \kappa$	3			
$\operatorname{sigjump}$	Nicht-kontinuierliche Verände-	$\sigma = b_1 + b_2 * i, \kappa,$	3			
	rung von σ zum Zeitpunkt t ₀	$i = 0$ für $t < t_0, i = 1$ für $t \ge t_0$				

Die Güte der Modellvarianten wird jeweils grafisch mit Hilfe eines Probability und eines Quantile Plots beurteilt (siehe z.B. Abbildung 5 oben und <u>Leitfaden</u> Kapitel 2.2.3). Je besser die Daten auf der Einheitsdiagonale liegen, desto eher kann davon ausgegangen werden, dass die Modellannahmen korrekt sind. Anhand eines Ablaufschemas wird schliesslich entschieden, welches nicht stationäre Modell allenfalls weiterverwendet wird (siehe Abbildung 5 im <u>Leitfaden</u> Kapitel 2.1.3). Im Folgenden sind jeweils die Verfahren mit den besten Resultaten aufgeführt.

¹Der Skalenparameter σ des POT-Ansatzes ist numerisch nicht identisch mit dem σ des BLOCK-Ansatzes.

2.1 Block Maximum Ansatz (BLOCK)

Der Block Maximum Ansatz (BLOCK) definiert den höchsten Wert innerhalb eines Zeitintervalls (Block, im vorliegenden Fall ein Jahr) als Extremwert.

Auswertungs- periode	Beschreibung	ausgewählte Modellvariante	Kapitel
1917 - 2015	gesamte Auswertungsperiode	stat	Kapitel 2.1.1.a
		mujump	Kapitel 2.1.1.b
1974 - 2015	Auswertungsperiode ab Bruchpunkt	stat	Kapitel 2.1.2.a

Folgende Varianten des BLOCK-Ansatzes werden in diesem Bericht beschrieben:

2.1.1 Gesamte Auswertungsperiode: 1917-2015

2.1.1.a Stationäre Modellvariante

Verfahren	Modellvariante	Auswertungsperiode	Modelleingangsdaten	Bemerkung
BLOCK	stat	1917-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}$	Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
99	763.7	186.78	-0.234

Die Güte der Modellvariante "stat" über die gesamte Auswertungsperiode wird grafisch anhand der in Abbildung 5 dargestellten Diagnostikplots beurteilt.

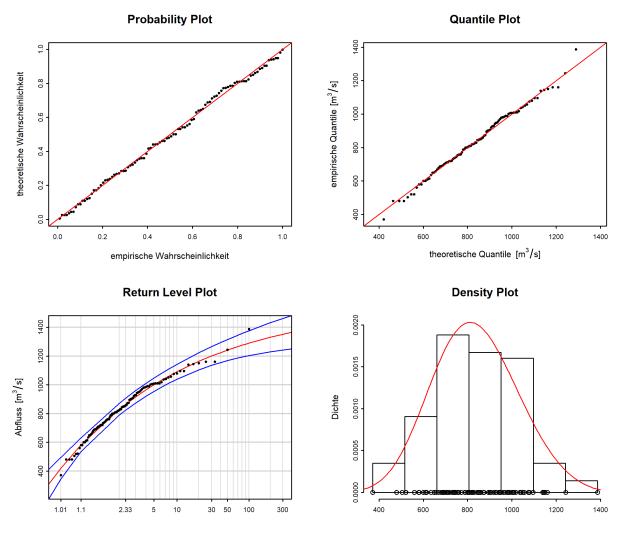


Abbildung 5: Diagnostikplots der Modellvariante "stat" des BLOCK-Ansatzes (1917-2015)

Bewertung Diagnostikplots (Abbildung 5):

Kriterien	$\mathbf{Bewertung}^2$	Bemerkungen
Anpassung unterer Bereich	mittel	kleinster Wert überschätzt
Anpassung mittlerer Bereich	gut	-
Anpassung oberer Bereich	schlecht	grösster Wert deutlich unterschätzt
Konfidenzintervall	klein	-

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären BLOCK-Ansatz über die gesamte Auswertungsperiode 1917-2015 (inkl. 95% - Konfidenzintervall berechnet über die Deltamethode):

HQ_{T}	untere Konfidenzgrenze [m ³ /s]	Abfluss $[m^3/s]$	obere Konfidenzgrenze [m ³ /s]
HQ_2	788	829	871
HQ_{10}	1039	1090	1142
HQ_{30}	1136	1200	1265
HQ_{100}	1203	1290	1376
HQ_{300}	1242	1352	1461

²Siehe <u>Leitfaden</u> Kapitel 2.2.3

2.1.1.b Nicht stationäre Modellvariante

Der Vergleich der verschiedenen Modellvarianten des BLOCK-Ansatzes über die gesamte Auswertungsperiode zeigt, dass sich die Modelle "mul", "muq", "musigl" und "mujump" signifikant vom stationären Modell ("stat") unterscheiden.³Aufgrund des im Ablaufschema beschriebenen Vergleichsansatzes verschiedener nicht stationärer Modellvarianten kommt "mujump" als bestes nicht stationäres Modell in Frage, da es auch hydrologisch am besten begründbar ist. Daher werden im Folgenden die Resultate von "mujump" dargestellt (siehe Abbildung 5 im Leitfaden).

Verfahren	Modellvariante	Auswertungsperiode	${ m Modelleing angs daten}$	Bemerkung
BLOCK	mujump1974	1917-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}^4$		Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
	$\mathbf{a_1}$	$\mathbf{a_2}$		
99	703.5	159.74	171.19	-0.2503

Die Güte der Modellvariante "mujump1974" über die gesamte Auswertungsperiode wird grafisch anhand der in Abbildung 6 dargestellten Diagnostikplots beurteilt.

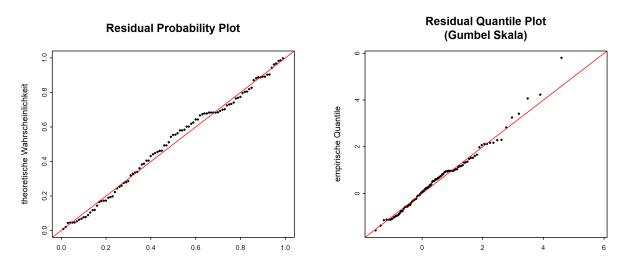
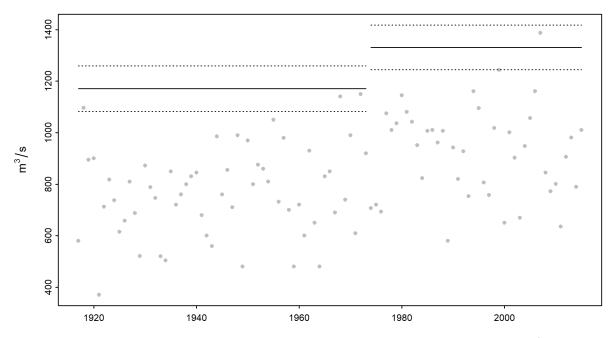


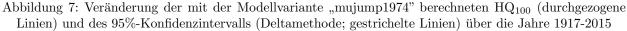
Abbildung 6: Diagnostikplots der Modellvariante "mujump1974" des BLOCK-Ansatzes (1917-2015)

Bewertung Diagnostikplots (Abbildung 6):

Kriterien	$\mathbf{Bewertung}^5$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut-mittel	-
Anpassung oberer Bereich	schlecht	grösste Werte unterschätzt
Vergleich mit stationärem Modell	kaum verbessert	grösste Werte eher schlechter angepasst

 ${}^4\hat{\mu}=a_1+a_2{}^*i, i=0$ für t<t_0, i= 1 für t \geq t_0 (s. Tabelle 1)


³Als Zeitpunkt t_0 für das Modell "mujump" wird aufgrund des Resultats der Bruchpunktanalyse das Jahr 1974 gewählt (siehe Kapitel 1).


⁵Siehe <u>Leitfaden</u> Kapitel 2.2.3

Folgende Tabelle enthält die für das aktuellste Jahr (2015) bestimmten Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit der Modellvariante "mujump1974" des BLOCK-Ansatzes über die gesamte Auswertungsperiode 1917-2015 (inkl. 95%-Konfidenzintervall berechnet über die Deltamethode):

HQ_{T}	untere Konfidenzgrenze [m ³ /s]	Abfluss $[m^3/s]$	obere Konfidenzgrenze [m ³ /s]
HQ_2	867	923	979
HQ_{10}	1098	1158	1218
HQ_{30}	1186	1254	1322
HQ_{100}	1244	1331	1417
HQ_{300}	1276	1383	1490

In Abbildung 7 ist die Veränderung des mit dem Modell "mujump 1974" berechneten HQ₁₀₀ zwischen 1917 und 2015 dargestellt.

2.1.2 Auswertungsperiode ab Bruchpunkt: 1974-2015

2.1.2.a Stationäre Modellvariante

Verfahren	Modellvariante	Auswertungsperiode	${ m Modelleing angs daten}$	Bemerkung
BLOCK	stat	1974-2015	Jahresmaxima	-

Verwendete Anzahl Werte und geschätzte Modellparameter:

Anzahl Werte n	Lageparameter $\hat{\mu}$	Skalenparameter $\hat{\sigma}$	Formparameter $\hat{\kappa}$
42	859.2	170.01	-0.2235

Die Güte der Modellvariante "stat" über die Auswertungsperiode ab Bruchpunkt wird grafisch anhand der in Abbildung 8 dargestellten Diagnostikplots beurteilt.

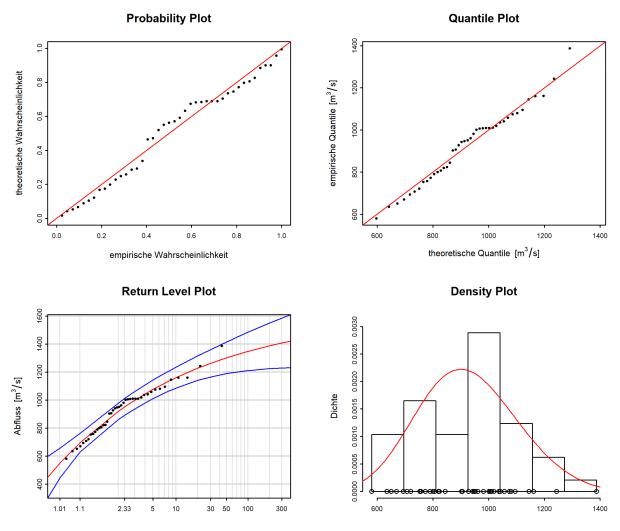


Abbildung 8: Diagnostikplots der Modellvariante "stat" des BLOCK-Ansatzes (1974-2015)

Bewertung Diagnostikplots (Abbildung 8):

Kriterien	$\mathbf{Bewertung}^{6}$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut-mittel	-
Anpassung oberer Bereich	mittel	grösster Wert unterschätzt
Konfidenzintervall	klein	-

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären BLOCK-Ansatz über die Auswertungsperiode ab Bruchpunkt 1974-2015 (inkl. 95% - Konfidenzintervall berechnet über die Deltamethode):

HQ_{T}	untere Konfidenzgrenze [m ³ /s]	Abfluss $[m^3/s]$	obere Konfidenzgrenze [m ³ /s]
HQ_2	860	919	978
HQ_{10}	1085	1160	1234
HQ_{30}	1165	1263	1361
HQ_{100}	1211	1348	1485
HQ_{300}	1228	1407	1586

 $^{^{6}}$ Siehe <u>Leitfaden</u> Kapitel 2.2.3

2.2 Peaks Over Threshold Ansatz (POT)

Beim Peaks Over Threshold Ansatz (POT) gelten Werte als Extreme
reignisse, wenn sie einen hohen Schwellenwert u überschreiten.

Zur Berechnung des POT-Ansatzes werden die Tagesmaxima ab 1974 verwendet. Vor der Bearbeitung müssen diese von Clustern bereinigt werden. Für Aare - Brugg wird der Zeitabstand L zwischen zwei unabhängigen Ereignissen auf den Mindestwert von 14 Tagen festgelegt.

Folgende Modellvarianten des POT-Ansatzes werden in diesem Bericht beschrieben:

Auswertungs- periode	Beschreibung	ausgewählte Modellvariante	Kapitel
1974 - 2015	Auswertungsperiode POT	stat	Kapitel 2.2.1.a

Für die Auswertungsperiode POT zeigt sich kein signifikanter Unterschied zwischen der stationären und den nicht stationären Modellvarianten. 7

2.2.1 Auswertungsperiode POT: 1974-2015

Im vorliegenden Fall wurde als Schwellenwert u 750 m³/s gewählt (siehe Anhang A). Abbildung 9 zeigt die effektiv verwendeten Extremereignisse.

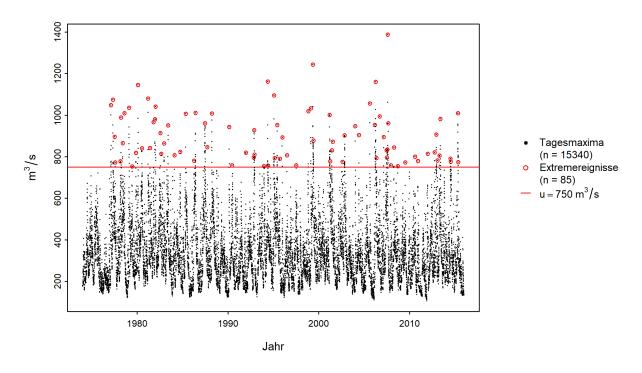


Abbildung 9: Auswahl der für den POT-Ansatz verwendeten Extremereignisse

Verfahren	Modellvariante	Auswertungsperiode	Modelleingangsdaten	Bemerkung
POT	stat	1974-2015	Tagesmaxima	-

 $^{^7\}mathrm{Als}$ Zeitpunkt t
0 für das Modell "sigjump" wird das Jahr 1995 gewählt.

Verwendete Anzahl Werte und geschätzte Modellparameter:

Schwellenwert	Anzahl Werte	Ereignisrate	Skalenparameter	Formparameter
u	n	$\hat{\lambda}$	$\hat{\sigma}$	$\hat{\kappa}$
$750 \text{ m}^3/\text{s}$	85	2.02	180.1	-0.197

Die Güte der Modellvariante "stat" über die Auswertungsperiode POT wird grafisch anhand der in Abbildung 10 dargestellten Diagnostikplots beurteilt.

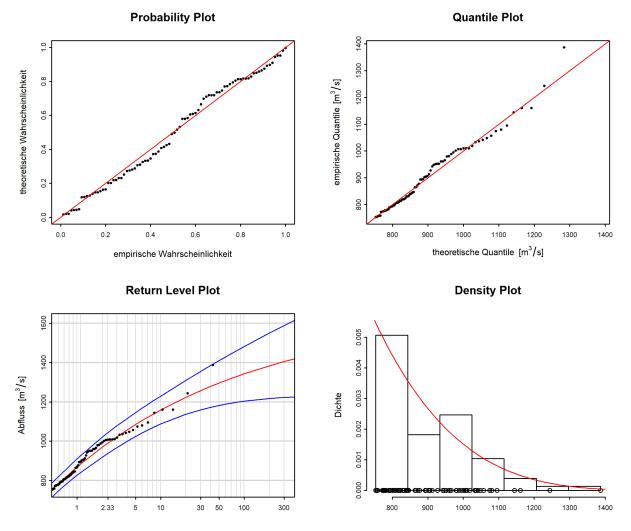


Abbildung 10: Diagnostikplots der Modellvariante "stat" des POT-Ansatzes (1974-2015)

Bewertung Diagnostikplots (Abbildung 10):

Kriterien	$\mathbf{Bewertung}^8$	Bemerkungen
Anpassung unterer Bereich	gut	-
Anpassung mittlerer Bereich	gut	-
Anpassung oberer Bereich	mittel	grösster Wert unterschätzt
Konfidenzintervall	klein	-

 $^{^8 {\}rm Siehe} \ \underline{{\rm Leitfaden}}$ Kapitel 2.2.3

Folgende Tabelle enthält die Abflussmengen für verschiedene Wiederkehrperioden, berechnet mit dem stationären POT-Ansatz über die Auswertungsperiode POT 1974-2015 (inkl. 95% - Konfidenzintervall berechnet über die Deltamethode):

HQ_{T}	untere Konfidenzgrenze $[m^3/s]$	Abfluss $[m^3/s]$	obere Konfidenzgrenze [m ³ /s]
HQ_2	920	970	1021
HQ_{10}	1088	1159	1230
HQ_{30}	1160	1257	1355
HQ_{100}	1204	1343	1482
HQ_{300}	1223	1406	1589

3 Vergleich der verschiedenen Resultate

Abbildung 11 zeigt die HQ_T der stationären sowie jener nicht stationären Modellvarianten, welche bei beiden parametrischen Verfahren jeweils am besten an die Daten angepasst waren. Sowohl die Werte wie auch die Grösse der Konfidenzintervalle, welche ein Mass für die Unsicherheit sind, variieren relativ stark. Generell werden diese Unterschiede grösser, je grösser die Wiederkehrperiode T und je kleiner die zugrunde liegende Datenmenge ist. Die Periode ab Bruchpunkt des BLOCK-Ansatzes entspricht in diesem Fall der Vergleichsperiode.

3.1 Beurteilung der unterschiedlichen Auswertungsperioden

Nur mit dem BLOCK-Ansatz, der auf der Untersuchung von Monatsmaxima basiert, ist eine Analyse der Auswertungsperiode 1917 - 2015 möglich. Für die Darstellung des Einflusses der Messperiode wurden die Resultate des BLOCK-Ansatzes für die verschiedenen Auswertungsperioden verglichen:

Perioden	HQ_{T}	Konfidenzintervall
Periode ab Bruchpunkt / Gesamte	deutlich höhere Werte	deutlich grösser
Auswertungsperiode		

Nach 1974 wurden durchschnittlich höhere Jahreshochwasser beobachtet. Dies führt zu höheren HQ_T in der Periode ab Bruchpunkt. Aufgrund der geringeren Datenmenge ist das Konfidenzintervall bei der Periode ab Bruchpunkt deutlich grösser als in der gesamten Auswertungsperiode.

3.2 Allgemeiner Vergleich der verschiedenen Modellansätze

In Abbildung 11 und der zugehörigen Tabelle sind die Resultate der verschiedenen Modellansätze zusammengefasst und zeigen folgende Sachverhalte auf:

Differenzen der Resultate der berechneten HQ_T der beiden Ansätze:

Mit Ausnahme des HQ_2 stimmen die HQ_T des POT-Ansatzes mit jenen des BLOCK-Ansatzes der Periode ab Bruchpunkt (=Vergleichsperiode) überein. Das HQ_2 ist dagegen deutlich grösser. Im Vergleich mit dem BLOCK-Ansatz der gesamten Auswertungsperiode liegen alle Werte deutlich höher.

Differenzen der berechneten Konfidenzintervalle der beiden Ansätze:

Allgemein nehmen die Unsicherheiten und somit die Konfidenzintervalle zu, je grösser die Wiederkehrperiode T ist. Die Konfidenzintervalle der verschiedenen Ansätze unterscheiden sich nur geringfügig.

Vergleich von stationären und nicht stationären Varianten:

Beim BLOCK-Ansatz kann mit einer nicht stationären Variante die Modellgüte nur minim verbessert werden. Dabei wird die Zunahme grosser Hochwasser in den letzten Jahren in das Modell einbezogen. Die berechneten Wiederkehrwerte für das Jahr 2015 sind in der Folge deutlich höher als mit den stationären Modellvarianten. Eine Aussage über die zukünftige Entwicklung ist aufgrund der Abhängigkeit von der Seeregulierung schwierig.

Für die Beantwortung konkreter Fragestellungen bilden die Resultate dieser statistischen Auswertungen nur eine von verschiedenen Grundlagen. Kenntnisse über die hydrologischen Prozesse im Einzugsgebiet, Überlegungen zu Worst-Case-Szenarien für Niederschlag und Abfluss etc. sind unerlässlich, um das Hochwasserrisiko abzuschätzen. Die Abteilung Hydrologie des BAFUs befürwortet eine "hydrologisch-argumentative Vorgehensweise" wie sie Merz und Blöschl (2008 zitiert in DWA 2015:52) vorschlagen.

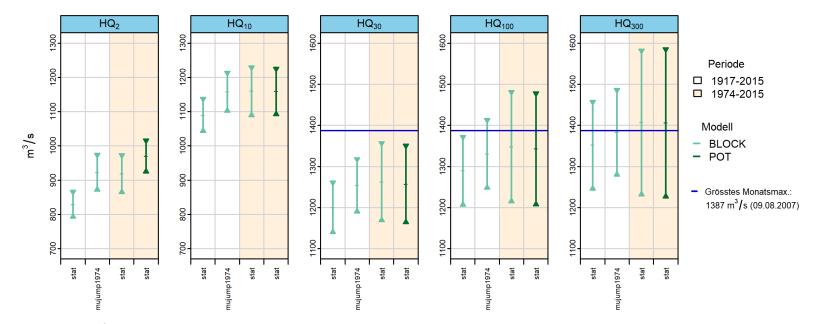


Abbildung 11: $HQ_T [m^3/s]$ inkl. 95%-Konfidenzintervalle, berechnet mit den stationären sowie den jeweils bestangepassten Modellvarianten des BLOCKund POT-Ansatzes für das Jahr 2015

Auswertungsperiode	Verfahren	Anpass	ung		Bemerkung
1917 - 2015	BLOCK stat	mittel	gut	schlecht	grösster Wert deutlich unterschätzt
	BLOCK mujump1974	gut	gut-	schlecht	grösste Werte unterschätzt
			mittel		grösste Werte eher schlechter angepasst
1974 - 2015	BLOCK stat	gut	gut-	mittel	grösster Wert unterschätzt
			mittel		
1974 - 2015	POT stat	gut	gut	mittel	grösster Wert unterschätzt

4 Literatur

BAFU (2015): Leitfaden zu den Stationsberichten der Hochwasserstatistik. BAFU, Bern.

Baumgartner, E., Boldi, M.-O., Kan, C., Schick, S. (2013): Hochwasserstatistik am BAFU - Diskussion eines neuen Methodensets. Wasser Energie Luft, Heft 2/2013. Baden.

BWG (Hrsg.) (2003a): Wörterbuch Hochwasserschutz. Haupt Verlag, Bern.

BWG (Hrsg.) (2003b): Hochwasserabschätzung in schweizerischen Einzugsgebieten. Praxishilfe. Berichte des BWG, Serie Wasser Nr. 4, Bern.

Coles, S. (2001): An Introduction to Statistical Modeling of Extreme Values. Springer. London.

DWA (Hrsg.) (2012): Merkblatt DWA-M 552. Ermittlung von Hochwasserwahrscheinlichkeiten. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. Hennef.

Anhang

A Bestimmung des Schwellenwerts zur Abgrenzung von Extremwerten

Der Schwellenwert u zur Abgrenzung der Extremwerte des POT-Ansatzes für die Auswertungsperiode 1974 - 2015 (siehe Kapitel 2.2.1) wird anhand des "mean residual life plots" auf 750 m³/s festgelegt (siehe Abbildung 12).

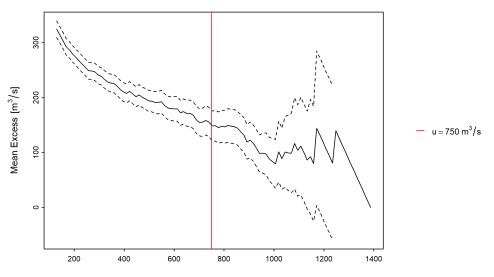


Abbildung 12: "mean residual life plot" mit gewähltem Schwellenwert u (rote Linie) mean Excess (schwarze Linie), 95%-Konfidenzintervall (gestrichelte Linien)

B Glossar

Auswertungsperiode	Begrenzter Zeitraum, aus welchem eine Stichprobe der Hochwasserabflüss stammt, die als repräsentativ für die Grundgesamtheit angenommen wird Es wird davon ausgegangen, dass die Eigenschaften der Grundgesamthe mit dieser Stichprobe annähernd abgebildet werden.				
Devianzstatistik	Mit der Devianzstatistik kann die Anpassungsgüte eines Modells für einen gegebenen Datensatz untersucht werden.				
Deltamethode	Das BAFU nutzt die Deltamethode zur Berechnung von Konfidenzinter- vallen in den Return Level Plots. Die Methode basiert auf einer Taylor- Entwicklung der Funktion der HQ_T und einer asymptotischen Normalver- teilung (für technische Details siehe Coles 2001, S. 33).				
Güte auch Anpassungs- güte oder Anpassung	Mass für die Abweichung eines statistischen Modells (theoretische Werte) und einer Menge von Beobachtungen bzw. Messungen (empirische Daten).				
HQT	Der mittels Verteilungsfunktion für eine vorgegebene Jährlichkeit T be- stimmte Hochwasserabfluss. HQ_T ist ein Schätzwert, der über oder un- ter dem wahren Wert der Hochwasserabflüsse mit statistisch gesehen T- jährlicher Wiederkehrperiode liegen kann. HQ_T wird auch als Wiederkehr- wert bezeichnet. Die mit den parametrischen Verfahren berechneten HQ_T gelten für eine ganze Periode (stationärer Fall) bzw. das aktuelle Berichts- jahr (nicht-stationärer Fall).				
Konfidenzintervall auch Vertrauensintervall	Konfidenzintervalle beschreiben die Unsicherheit des Outputs eines statis- tischen Modells. Sie berücksichtigen dabei den Fehler des Modells selbst, nicht aber weitere Unsicherheiten (z.B. Messfehler).				
Maximum-Likelihood- Methode	Bezeichnung für ein Verfahren, das die Parameter einer Verteilungsfunkti- on aus den Informationen einer Stichprobe schätzt, indem der Maximum- Likelihood-Wert der Funktion maximiert wird.				
Parametrische Verfahren	Ein wichtiges Ziel der Statistik ist es, mittels der Daten einer Stichprobe Aussagen über eine unbekannte Grundgesamtheit herzuleiten. Dafür eig- nen sich u. a. parametrische Verfahren, bei welchen angenommen wird, dass die Grundgesamtheit eine vorgegebene Wahrscheinlichkeitsverteilung besitzt, welche durch einen oder mehrere Parameter eindeutig bestimmt ist. Die beiden betrachteten Verfahren stützen sich auf die Allgemeine Ex- tremwertverteilung (BLOCK), bzw. auf die Allgemeine Pareto-Verteilung (POT), weil diese Verteilungen die Natur der Daten (Blockmaxima, bzw. Daten ab einem gewissen Schwellwert) am besten reflektieren (siehe Coles 2001).				
Block-Maximum-Ansatz (BLOCK)	Der Block Maximum Ansatz (BLOCK) definiert den höchsten Wert inner- halb eines Zeitintervalls (Block, im vorliegenden Fall ein Jahr) als Extrem- wert (siehe <u>Leitfaden</u> Kapitel 2.1.1 oder Coles 2001, Kapitel 3.1).				
Peaks Over Threshold (POT)	Beim Peaks-Over-Threshold-Ansatz (POT) gelten Werte als Extremereig nisse, wenn sie einen gewissen Schwellenwert u (in m ³ /s bzw. l/s) übe schreiten. Die verwendeten Daten werden vorgängig von Clustern befre (siehe <u>Leitfaden</u> Kapitel 2.1.2 oder Coles 2001, Kapitel 4.2).				
Probability Plot (P-P-Plot)	Exploratives, grafisches Werkzeug, in dem die Verteilungsfunktionen zweier statistischer Variablen gegeneinander aufgetragen werden, um ihre Vertei- lungen zu vergleichen. Hier: aufsummierte empirische Häufigkeiten vs. die theoretische, kumulierte Verteilungsfunktion. Je besser die Daten auf der Einheitsdiagonale liegen, desto mehr kann davon ausgegangen werden, dass die Modellannahmen korrekt sind. (Enthält die gleichen Informationen wie der Q-Q-Plot, dargestellt auf einer unterschiedlichen Skala.)				

Quantile Plot (Q-Q-Plot)	Exploratives, grafisches Werkzeug, in dem die Quantile zweier statistischer Variablen gegeneinander aufgetragen werden, um ihre Verteilung zu verglei- chen. Hier: beobachtete Abflusswerte vs. die mit Hilfe eines Modells berech- neten Abflussdaten. Stimmen die empirischen und theoretischen Quantile annähernd überein, liegen die Werte in der Grafik nahe der Diagonalen. (Enthält die gleichen Informationen wie der P-P-Plot, dargestellt auf ei- ner unterschiedlichen Skala.) Hinweis: Die theoretischen Quantile werden aus der Umkehrfunktion der Verteilungsfunktion berechnet. Für den direk- ten, optischen Vergleich mit dem entsprechenden Probability Plot sind die Achsen des Quantile Plots daher vertauscht.	
Stationarität	Beobachtet man bei einer Messstation, dass sich das Abflussverhalten über die Beobachtungsperiode nicht wesentlich ändert, so empfiehlt es sich, ein stationäres Modell zu verwenden. Im stationären Fall wird angenommen, dass alle Parameter der Verteilungsfunktion über den gesamten Untersu- chungszeitraum konstant sind.	
Nicht-Stationarität	Nicht-stationäre Modelle werden verwendet, um ein Abflussverhalten zu beschreiben, welches zeitlichen Änderungen unterliegt. Solche Änderungen können durch einen Wechsel der Messgeräte und Messmethoden, durch Stationsverlagerung, durch Gerinneveränderungen und durch anthropogene Einflüsse verursacht werden. Bei anthropogenen Einflüssen können die Veränderungen meist nicht einem einzelnen Eingriff zugeordnet werden, sondern sie bestehen aus Überlagerungen von verschiedenen, wasserwirtschaftlichen Massnahmen. Werden zeitliche Veränderungen der Daten vermutet, werden die Parameter der entsprechenden Verteilungsfunktion zeitlich abhängig modelliert. Dies führt dazu, dass sich auch die berechneten HQ _T über die Zeit verändern.	
Verteilungsfunktion	Beschreibt die Grundgesamtheit der Hochwasserabflüsse aus einem Ein- zugsgebiet. Die Verteilungsfunktion gibt die Wahrscheinlichkeiten an, dass ein Hochwasserabfluss HQ in einem Jahr erreicht oder unterschritten wird.	
Empirische Häufigkeitsverteilung	Kann aus der gewählten Stichprobe bestimmt werden.	
Theoretische Wahrscheinlichkeits- verteilung	Schliesst von der gewählten Stichprobe auf die Grundgesamtheit. Es gibt viele verschiedene theoretische Verteilungsfunktionen, welche die Voraus- setzungen für die Anwendung in der Hochwasserstatistik erfüllen, aber kei- ne, die für alle Stichproben die besten Resultate gewährleistet.	
Verteilungsparameter		
κ Formparameter (kappa)	Der Formparameter κ steht in direktem Zusammenhang mit der sogenan ten "Heaviness of Tail"der Verteilung. Als Tail wird der Bereich mit d Ausreissern nach oben bezeichnet. Ist κ gross, so werden viele solche Au reisser angenommen. Bei negativen Werten für κ hingegen wird angenon men, dass für die Extremwerte eine obere Schranke existiert.	
λ Ereignisrate (lambda)	Beim POT-Ansatz entspricht die Ereignisrate λ der mittleren Anzahl Schwellenwertüberschreitungen während des Zeitintervalls von einem Jahr.	
μ Lageparameter (mu)	Beschreibt die mittlere Lage der Stichprobenelemente (hier: Abflussmessungen) in Bezug auf die Messskala (hier: m^3/s bzw. l/s).	